A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Lanostane triterpenoids from Ganoderma calidophilum exhibit potent anti-tumor activity by inhibiting PTP1B. | LitMetric

Lanostane triterpenoids from Ganoderma calidophilum exhibit potent anti-tumor activity by inhibiting PTP1B.

Chem Biol Interact

College of Life Science, Hebei University, 071002, Baoding, Hebei, China; Hebei Innovation Center for Bioengineering and Biotechnology, Hebei University, 071002, Baoding, China. Electronic address:

Published: November 2024

The species Ganoderma calidophilum represents a distinct variety within the genus Ganoderma and used by the indigenous Li ethnic group as a medicinal agent for the prevention and treatment of cancer. However, the precise biological activity and role of G. calidophilum in antitumor treatment remain largely unresolved. Several lanostane triterpenoids have been isolated from G. calidophilum. The enzyme activity analysis revealed that four lanostane triterpenoids exhibited PTP1B inhibition activity, with minimal inhibition towards SHP2, SHP1, PTPN5, PTPRA, STEP and TCPTP. Molecular docking analysis demonstrated that these compounds primarily bind to the substrate recognition and entry regions of PTP1B. Further analysis indicated that among them, ganoderic aldehyde A (GAA) is a selective and non-competitive PTP1B inhibitor. GAA inhibited the proliferation, colony formation and migration of C33A and MDA-MB-231 cells in a dose-dependent manner. GAA has the capacity to induce apoptosis in a cell-type-specific manner, both in a caspase-dependent and -independent manner. PTP1B siRNA significantly reduced the cytotoxic effect of GAA, while overexpression of PTP1B significantly increased cell growth after GAA treatment. These findings confirm that PTP1B is a functional target of GAA. Research into the mechanisms of action of GAA has revealed that it could inhibit the activation of AKT by inhibiting PTP1B, while simultaneously activating p38, which promotes cell death. It is possible to develop specific PTP1B inhibitors based on the lanosterol triterpene skeleton. G. calidophilum has the potential to be developed into functional foods or drugs with the aim of preventing and treating cancer.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cbi.2024.111253DOI Listing

Publication Analysis

Top Keywords

lanostane triterpenoids
12
ptp1b
9
ganoderma calidophilum
8
inhibiting ptp1b
8
gaa
7
calidophilum
5
triterpenoids ganoderma
4
calidophilum exhibit
4
exhibit potent
4
potent anti-tumor
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!