Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The level and breadth of deoxynivalenol (DON) contamination in foods made with cereals have increased due to global warming. Consumption of DON-contaminated food and feed poses significant risks to human health and animal production. However, the mechanism by which prolonged exposure to low-dose DON leads to liver damage in animals and effective treatments remain unclear. Our investigation focused on the impact of varying DON exposure times on AML12 cells as well as the long-term liver damage caused by low-dose DON exposure in mice. In addition, this article investigated the unique role of hesperidin in mitigating hepatic ferroptosis induced by low-dose DON exposure. Our results imply that DON's suppression of O-GlcNAcylation exacerbated mitophagy by encouraging ferritinophagy and causing labile iron to aggregate within mitochondria. Furthermore, DON could increase NCOA4-mediated ferritinophagy by De-O-GlcNAcylation FTH to trigger ferroptosis-associated liver injury in mice. Notably, hesperidin alleviated the susceptibility to ferroptosis by increasing O-GlcNAcylation levels and effectively attenuated the liver injury induced by low-dose DON exposure. This finding provides a new strategy for dealing with liver injury caused by low-dose DON exposure.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2024.135952 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!