Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: The long history of clinical experience in China have confirmed the effectiveness of traditional Chinese medicine (TCM) in treating prostate cancer (PCa). Until now, several bioactive compounds with anti-PCa potential, such as curcumin, gallic acid, and quercetin, have been extracted from TCM. Recent studies have shown that encapsulating these TCM bioactive compounds into nano-delivery system enhanced their bioavailability and improved their ability to target PCa tumors.
Purpose: This review aims to summarize the anti-PCa effects and molecular mechanisms of TCM bioactive compounds and discuss the clinical application prospects and future research trends of nano-delivery system based on these compounds.
Methods: Literatures focusing on the treatment of PCa using traditional Chinese medicine compounds via nano-drug delivery system were searched from Electronic databases, including PubMed, Web of Science, and Scopus until December 2023.
Results: Polyphenols, alkaloids, terpenes, and quinones exhibit anti-PCa effects through various pathways. Notably, compounds like curcumin, gallic acid, quercetin, and tanshinone have been extensively studied in nano-delivery systems for anti-PCa purpose. Nano-delivery systems enhance the biological activity of free compounds and reduce toxic side effects, as well. Commonly used nanomaterials for delivering TCM compounds include polymer nanomaterials, liposomes, solid lipid nanoparticles, nanostructured lipid carriers, and niosomes.
Conclusion: Research on nano-delivery systems for TCM bioactive compounds holds promising prospects for anti-PCa therapy. However, extensive clinical trials are necessary to evaluate the effectiveness and safety of these nanodrugs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.phymed.2024.155554 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!