Noninvasive Raman spectroscopy for the detection of rice bacterial leaf blight and bacterial leaf streak.

Talanta

State Key Laboratory of Agrobiotechnology and MOA Key Laboratory for Monitoring and Green Management of Crop Pests, China Agricultural University, Beijing, 100193, China. Electronic address:

Published: January 2025

AI Article Synopsis

  • Plant diseases cause major food production losses, making quick detection of pathogens vital to protecting crops.
  • Raman spectroscopy (RS) is a fast, sensitive, and non-destructive method for detecting bacteria without needing extra labeling.
  • Using RS combined with convolutional neural networks, researchers achieved 97.5% accuracy in identifying two bacteria strains affecting rice, even detecting early-stage infections at 87.02% accuracy.

Article Abstract

Plant diseases pose significant threats to agricultural yields and are responsible for nearly 20 % of losses in total food production. Therefore, the rapid detection of plant pathogens is critically important for preventing the rapid development of plant diseases and minimizing crop damage. Raman spectroscopy (RS) has been shown to be effective for detecting living biological samples. Compared with traditional detection methods, RS is fast, sensitive, and non-destructive; it also does not require sample labeling. In this study, we used Laser tweezers Raman spectroscopy combined with convolutional neural networks to detect two closely related strains of bacteria, Xanthomonas oryzae pv. oryzae (Xoo) and Xanthomonas oryzae pv. oryzicola (Xoc), exuded from bacteria-infected rice leaves. The accuracy of this technique was 97.5 %. For the application of RS in the field, we used the portable Raman spectrometer to detect mock-inoculated as well as Xoo- and Xoc-infected rice leaves at different disease courses. The identification accuracy via this technique was 87.02 % in the early stage, in which no obvious symptoms were apparent. This method also revealed spectral differences in rice leaves caused by the two bacteria, which could be leveraged for subsequent analysis of the molecular mechanism of infection. Our results indicate that RS is a promising approach for the early detection of bacterial diseases in rice in the field, as well as for in-depth single-cell analysis in laboratory settings.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.talanta.2024.126962DOI Listing

Publication Analysis

Top Keywords

raman spectroscopy
12
rice leaves
12
bacterial leaf
8
plant diseases
8
xanthomonas oryzae
8
accuracy technique
8
rice
5
noninvasive raman
4
detection
4
spectroscopy detection
4

Similar Publications

A simply synthesized, silver ions-doped porous gold microparticles-based SERS aptamer sensor for ultrasensitive and broad-range quantitative detection of IL-6.

Anal Chim Acta

January 2025

Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China. Electronic address:

Background: The multifunctional cytokine interleukin-6 (IL-6) plays a pivotal role in chronic and acute inflammatory responses, underscoring the importance of accurately determining IL-6 levels for early diagnosis, prevention, and treatment of inflammation.

Results: This study developed a versatile and innovative single-particle surface-enhanced Raman spectroscopy (SERS) sensing platform for the precise and sensitive quantification of IL-6 in complex samples using a novel one-pot synthesized, silver ions-doped three-dimensional porous gold microparticles (PGMs) with abundant hot spots for robust SERS enhancement. By rationally designing rich cytosine-Ag-cytosine base pairs between IL-6 aptamers and complementary chains on the PGMs, we harnessed the SERS-enhancing effect to achieve highly sensitive and specific IL-6 quantification within a wide range of 10 to 10 mg/mL and a limit of detection (LOD) of 0.

View Article and Find Full Text PDF

Development of a portable SERS tool to evaluate the effectiveness of washing methods to remove pesticide residue from fruit surface.

Anal Chim Acta

January 2025

Department of Chemistry, State University of New York at Binghamton, Binghamton, NY, 13902, USA; Materials Engineering and Science Program, State University of New York at Binghamton, Binghamton, NY, 13902, USA. Electronic address:

Background: Pesticides are widely used in agriculture to control pests and enhance crop yields. However, post-harvest, there are growing concerns about the potential health risks posed by pesticide residues on produce surfaces. Analyzing these residues is challenging due to their typically low concentrations and the potential interference from the complex matrix of the produce's surface.

View Article and Find Full Text PDF

Multi-pass cavity-enhanced Raman spectroscopy of complex natural gas components.

Anal Chim Acta

January 2025

State Key Laboratory of Power Transmission Equipment Technology (Chongqing University), Chongqing, 400044, China; National Innovation Center for Industry-Education Integration of Energy Storage Technology, China. Electronic address:

Background: The concentration of natural gas components significantly impacts the transportation, storage, and utilization of natural gas. Consequently, implementing online monitoring and leak detection systems is vital to guarantee the efficient use of natural gas and to uphold its safe and stable operation. Raman spectroscopy offers distinctive benefits, including high selectivity, superior precision, and the capability to detect multiple gas components simultaneously using a single-wavelength laser.

View Article and Find Full Text PDF

Magnetic optimizing surface-enhanced Raman scattering (SERS) strategy of detection and in-situ monitoring of photodegradation of Benzo[a]pyrene in water.

Anal Chim Acta

January 2025

The Education Ministry Key Laboratory of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, Shanghai Frontiers Science Center of Biomimetic Catalysis and College of chemistry and materials science, School of Environmental and Geographical Sciences. Shanghai Normal University, Shanghai, 200234, People's Republic of China. Electronic address:

Background: Polycyclic aromatic hydrocarbons (PAHs) are one of the most dangerous persistent organic pollutants in the environment. Due to the discharge of chemical plants and domestic water, the existence of PAHs in sea water and lake water is harmful to human health. A method for rapid detection and removal of PAHs in water needs to be developed.

View Article and Find Full Text PDF

Surface-Enhanced Raman Scattering (SERS)-based biosensors for advanced extracellular vesicle detection: A review.

Anal Chim Acta

January 2025

School of Medical Technology, Guangdong Medical University, Dongguan, 523808, China; School of Basic Medical Science, Southern Medical University, Guangzhou, 510515, China. Electronic address:

Background: Extracellular Vesicles (EVs), as nano-scale vesicles rich in biological information, hold an indispensable status in the biomedical field. However, due to the intrinsic small size and low abundance of EVs, their effective detection presents significant challenges. Although various EV detection techniques exist, their sensitivity and ease of operation still need enhancement.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!