Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
This study aims to explore the regulating effect and mechanism of naringenin (NGN) on the hepatic stellate cells (HSCs) apoptosis and its preventive effects on MASH fibrosis. C57BL/6 mice were subjected to either high-fat diet (HFD) plus carbon tetrachloride (CCl) injection (HFD + CCl) for 8 weeks to induce a MASH fibrosis model or bile duct ligation (BDL) to establish a liver fibrosis model, NGN was administered by gavage. LX2 cells were stimulated by oleic acid (OA) and lipopolysaccharide (LPS) (OA + LPS) to study the effects of NGN on activated hepatic stellate cell (HSC). Additionally, LO2 cells stimulated with OA + LPS were used to assess the protective effects of NGN on lipotoxicity of hepatocytes. Our in vivo results showed that NGN administration effectively inhibited mouse liver fibrosis in both of the MASH model and BDL model. The in vitro results indicate that NGN directly inhibited HSCs activation and promoted apoptosis of the activated HSCs, while it suppressed the apoptosis of LO2 cells induced by OA + LPS. The underlying mechanisms were mainly elucidated through the reduction of TAK1 phosphorylation, leading to the downregulation of p-JNK and p-ERK expression. This in turn, inhibited the phosphorylation of FoxO3a and promoted the nuclear localization of FoxO3a. Consequently, this may enhance the transcription of apoptosis-related genes, resulting in the apoptosis of activated HSCs. In conclusion, NGN ameliorates MASH fibrosis by enhancing apoptosis of the activated HSCs. The inhibitory effects of NGN on the TAK1/MAPK/FoxO3a pathway were demonstrated as its preventive mechanisms against MASH fibrosis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbrc.2024.150732 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!