A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Multiplex aptamer cluster detection platform and systems toxicology study for 17β-estradiol, bisphenol A, and diethylstilbestrol. | LitMetric

Multiplex aptamer cluster detection platform and systems toxicology study for 17β-estradiol, bisphenol A, and diethylstilbestrol.

Food Chem

School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; Yangzhou Engineering Research Center of Food Intelligent Packaging and Preservation Technology, Yangzhou University, Yangzhou 225127, China. Electronic address:

Published: January 2025

Intake of 17β-estradiol (E2), bisphenol A (BPA), and diethylstilbestrol (DES) from food can contribute to endocrine disorders. Therefore, developing a sensitive method for the simultaneous detection of E2, BPA, and DES and understanding their combined effects on endocrine disruption are crucial. We developed a fluorescence aptasensing platform utilizing DNase I-assisted cyclic enzymatic signal amplification in conjunction with an aptamer/graphene oxide complex. Using PEG 20000 as a surface-blocking agent, the aptasensor achieved ultralow detection limits of 2.643, 0.3039, and 0.6996 for E2, BPA, and DES, respectively. The sensor demonstrated accurate detection in plastic bottled water at spiked levels of 10 and 100 ng/mL. Systems toxicology revealed 30 potential targets for mixture-induced endocrine disruption. Molecular docking showed binding affinities of E2, BPA, and DES for ESR1 of -9.94, -8.29, and - 8.98 kcal/mol, respectively. These results highlight the effectiveness of the aptasensor and provide valuable insights into endocrine disruption mechanisms.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodchem.2024.141395DOI Listing

Publication Analysis

Top Keywords

bpa des
12
endocrine disruption
12
systems toxicology
8
17β-estradiol bisphenol
8
multiplex aptamer
4
aptamer cluster
4
detection
4
cluster detection
4
detection platform
4
platform systems
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!