High-performance ratiometric fluorescence detection and removal of tetracycline in milk based on CDs@ZSM-5:Eu.

Food Chem

Department of Chemistry, College of Sciences, Northeastern University, Shenyang, Liaoning 110819, China; Foshan Graduate School of Innovation, Northeastern University, Foshan, Guangdong 528311, China. Electronic address:

Published: January 2025

AI Article Synopsis

Article Abstract

Exploring materials with the dual functionality of detecting and removing tetracycline (TC) residues is crucial because of the environmental and health risks posed by antibiotic overuse. This study introduces a dual-emissive luminescent probe, CDs@ZSM-5:Eu, created through a solvent-free method combined with subsequent Euion exchange. The nanocomposite's blue emission, originating from carbon dots (CDs), is quenched by TC via an internal filtering effect, while an antenna effect triggers a strong red fluorescence of a TC-Euchelate. The ratiometric fluorescence changes in CDs@ZSM-5:Eu endow a self-calibrated sensing mechanism for TC, offering a low detection limit of 5.04 nM and a broad detection range of 0.01-50 μM. Demonstrated in real milk samples, the probe exhibits high selectivity and accuracy in detecting TC. The nanocomposite also displayed an impressive TC removal capacity of 238.1 mg g in water, ascribing to the enrichment and electrostatic attraction effects of ZSM-5 toward TC molecules. This research offers a facile strategy for constructing multifunctional zeolite-based hybrids for simultaneous TC detection and removal from aqueous solutions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodchem.2024.141441DOI Listing

Publication Analysis

Top Keywords

ratiometric fluorescence
8
detection removal
8
high-performance ratiometric
4
detection
4
fluorescence detection
4
removal tetracycline
4
tetracycline milk
4
milk based
4
based cds@zsm-5eu
4
cds@zsm-5eu exploring
4

Similar Publications

Microwave synthesis of molybdenum disulfide quantum dots and the application in bilirubin sensing.

Methods Appl Fluoresc

January 2025

Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No.36 Sanhao Street, Heping District, Shenyang, Liaoning Province, China, Shenyang, 110004, CHINA.

Molybdenum disulfide quantum dots (MoS2 QDs) is a new type of graphite like nanomaterial, which exhibited well chemical stability, unique fluorescence characteristics, and excellent biocompatibility. The conventional hydrothermal synthesis of MoS2 generally requires a long-term reaction at high temperature and high pressure. Herein, we have developed a simple and fast MoS2 QDs synthesis scheme using microwave heating, and further modified the surface of MoS2 QDs using 3-aminophenylboronic acid.

View Article and Find Full Text PDF

A sensitized dual-response ratiometric fluorescent sensor integrated smartphone platform for accurate discrimination and detection of tetracycline homologues based on N-CDs‒Eu complex.

Mikrochim Acta

January 2025

Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.

A sensitized dual-response ratiometric fluorescent sensor integrated smartphone platform for accurate discrimination and detection of tetracycline (TC) homologues was fabricated based on N-CDs-Eu complex. In the sensing system, N-CDs act as a sensitizer of Eu and significantly enhance the fluorescence of TC-Eu complex approximate 40-fold owing to the synergistic effect of antenna effect (AE) and fluorescence resonance energy transfer (FRET). A paper sensor integrated with a smartphone platform is further fabricated for on-site measurement of TC.

View Article and Find Full Text PDF

Dual Ratiometric Fluorescence Sensors Based on Chiral Carbon Dots for the Sensitive and Specific Detection of Arginine.

Anal Chem

January 2025

State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, P. R. China.

Arginine (Arg) is involved in tissue metabolism and regulates the immune function; thereby, achieving the detection of Arg is crucial for early diagnosis and treatment of diseases. Herein, dual ratiometric fluorescence sensors were prepared with the blue emission of levorotatory/dextrorotatory carbon dots (CDs) and the red emission of porphyrin (L/D-CDs-PP) for the sensitive and portable detection of Arg. Interestingly, L-CDs-PP and D-CDs-PP displayed not only the dual emission peaks at 493 and 650 nm but also different response modes to Arg; thus, they could serve as dual ratiometric fluorescence sensors to achieve the accurate and reliable detection of Arg, with the detection limit of 23.

View Article and Find Full Text PDF

Aiming to enable online freshness-monitoring of meat within modified-atmosphere package, we developed a ratiometric array that was fluorescently responsive to volatile organic compounds-ammonia (NH) released by protein decaying. The array was consisted of two 3 mm × 6 mm rectangles precisely and uniformly printed with fluorescein isothiocyanate (FITC) as indicator and rhodamine B (RhB) as internal reference on the filter-paper, respectively. The fluorescence intensity of the array area was calibrated according to Green/Red ratio of the digitalized pixels extracted from images facilitated by a smartphone.

View Article and Find Full Text PDF

Flow Cytometry Analysis of Perturbations in the Bacterial Cell Envelope Enabled by Monitoring Generalized Polarization of the Solvatochromic Peptide UNR-1.

Anal Chem

January 2025

Laboratoire d'Innovation Thérapeutique, UMR7200 CNRS, Université de Strasbourg, Institut du Médicament de Strasbourg, 74 route du Rhin, Strasbourg F-67000, France.

The worldwide spread of antibiotic resistance is considered to be one of the major health threats to society. While developing new antibiotics is crucial, there is also a strong need for next-generation analytical methods for studying the physiological state of live bacteria in heterogeneous populations and their response to environmental stress. Here we report a single-cell high-throughput method to monitor changes in the bacterial cell envelope in response to stress based on ratiometric flow cytometry.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!