Invasive aquatic plants pose a significant threat to coastal wetlands. Predicting suitable habitat for invasive aquatic plants in uninvaded yet vulnerable wetlands remains a critical task to prevent further harm to these ecosystems. The integration of remote sensing and geospatial data into species distribution models (SDMs) can help predict where new invasions are likely to occur by generating spatial outputs of habitat suitability. The objective of this study was to assess the efficacy of utilizing active remote sensing datasets (synthetic aperture radar (SAR) and light detection and ranging (LiDAR) with multispectral imagery and other geospatial data in predicting the potential distribution of an invasive aquatic plant based on its biophysical habitat requirements and dispersal dynamics. We also considered a climatic extreme (lake water levels) during the study period to investigate how these predictions may change between years. We compiled a time series of 1628 field records on the occurrence of Hydrocharis morsus-ranae (European frogbit; EFB) with nine remote sensing and geospatial layers as predictors to train and assess the predictive capacity of random forest models to generate habitat suitability in Great Lakes coastal wetlands in northern Michigan, USA. We found that SAR and LiDAR data were useful as proxies for key biophysical characteristics of EFB habitat (emergent vegetation and water depth), and that a vegetation index calculated from spectral imagery was one of the most important predictors of EFB occurrence. Our SDM using all predictors yielded the highest mean overall accuracy of 88.3% and a true skill statistic of 75.7%. Two of the most important predictors of EFB occurrence were dispersal-related: 1) distance to the nearest known EFB population (m), and 2) distance to nearest public boat launch (m). The area of highly suitable habitat (pixels assigned ≥0.8 probability) was 74% larger during a climatically extreme high water-level year compared to an average year. Our findings demonstrate that active remote sensing can be integrated into SDM workflows as proxies for important drivers of invasive species expansion that are difficult to measure in other ways. Moreover, the importance of a proxy variable for endogenous dispersal (distance to nearest known population) in these SDMs indicates that EFB is currently spreading, and thereby less influenced by within-site dynamics such as interspecific competition. Lastly, we found that extreme climatic conditions can dramatically change this species' niche, and therefore we recommend that future studies include dynamic climate conditions in SDMs to more accurately forecast the spread during early invasion stages.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jenvman.2024.122610 | DOI Listing |
Environ Monit Assess
January 2025
College of Geoscience and Surveying Engineering, China University of Mining and Technology (Beijing), Beijing, China.
Exploring the response relationship between civil war, population and land cover change is of great practical significance for social stability in Myanmar. However, the ongoing civil war in Myanmar hinders direct understanding of the situation on the ground, which in turn limits detailed study of the intricate relationship between the dynamics of the civil war and its impact on population and land. Therefore, this paper explores the response relationship between civil war conflict and population and land cover change in Myanmar from 2010 to 2020 from the perspective of remote sensing using the land cover data we produced, the open spatial demographics data, and the armed conflict location and event data project.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Geomorphology and Quaternary Geology, Faculty of Oceanography and Geography, University of Gdańsk, Bażyńskiego 4, 80-952, Gdańsk, Poland.
This study introduces a novel methodology for estimating and analysing coastal cliff degradation, using machine learning and remote sensing data. Degradation refers to both natural abrasive processes and damage to coastal reinforcement structures caused by natural events. We utilized orthophotos and LiDAR data in green and near-infrared wavelengths to identify zones impacted by storms and extreme weather events that initiated mass movement processes.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
The Cyprus Institute, Climate and Atmosphere Research Center, 2121, Nicosia, Cyprus.
The production of nitrogen oxides (NO = NO + NO ) is substantial in urban areas and from fossil fuel-fired power plants, causing both local and regional pollution, with severe consequences for human health. To estimate their emissions and implement air quality policies, authorities often rely on reported emission inventories. The island of Cyprus is de facto divided into two different political entities, and as a result, such emissions inventories are not systematically available for the whole island.
View Article and Find Full Text PDFEur J Cardiovasc Nurs
January 2025
Department of Health, Medicine and Caring Sciences, Linköping University, Linköping SE-581 83, Sweden.
Thorough consideration of user experiences and the weighing of advantages and disadvantages are essential when implementing new technology in clinical practice. This article describes a primary care nurse's experience using two technologies to monitor lung congestion in six patient cases: a remote dielectric sensing device for non-invasive lung fluid measurement and a portable handheld ultrasound device. Both can support decision-making when assessing lung congestion in heart failure patients.
View Article and Find Full Text PDFSci Rep
January 2025
College of Computer and Control Engineering, Northeast Forestry University, Haerbin, 150040, Heilongjiang, China.
Unmanned aerial vehicle (UAV) remote sensing has revolutionized forest pest monitoring and early warning systems. However, the susceptibility of UAV-based object detection models to adversarial attacks raises concerns about their reliability and robustness in real-world deployments. To address this challenge, we propose SC-RTDETR, a novel framework for secure and robust object detection in forest pest monitoring using UAV imagery.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!