Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: Attempt to read property "Count" on bool
Filename: helpers/my_audit_helper.php
Line Number: 3100
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Single-crystal hexagonal boron nitride (hBN) is used extensively in many two-dimensional electronic and quantum devices, where defects significantly impact performance. Therefore, characterizing and engineering hBN defects are crucial for advancing these technologies. Here, we examine the capture and emission dynamics of defects in hBN by utilizing low-frequency noise (LFN) spectroscopy in hBN-encapsulated and graphene-contacted MoS field-effect transistors (FETs). The low disorder of this heterostructure allows the detection of random telegraph signals (RTS) in large device dimensions of 100 μm at cryogenic temperatures. Analysis of gate bias- and temperature-dependent LFN data indicates that RTS originates from a single trap species within hBN. By performing multispace density functional theory (MS-DFT) calculations on a gated defective hBN/MoS heterostructure model, we assign substitutional carbon atoms in boron sites as the atomistic origin of RTS. This study demonstrates the utility of LFN spectroscopy combined with MS-DFT analysis on a low-disorder all-vdW FET as a powerful means for characterizing the atomistic defects in single-crystal hBN.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11503768 | PMC |
http://dx.doi.org/10.1021/acsnano.4c06929 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!