Pseudomonas aeruginosa exotoxin A (PTx) is an extremely potent inhibitor of protein synthesis, similar to diphtheria toxin in its mode of action. It is synthesized in precursor form and secreted as an Mr 66,583 protein lacking a 25-amino acid leader sequence. While the primary sequence and the nature of the enzyme activity that leads to inactivation of elongation factor 2 are known, the mechanism of PTx internalization remains obscure. To elucidate the entry pathway, we examined PTx-membrane interactions using vesicle targets of defined lipid composition. Insertion was monitored with an intramembranous photoreactive probe; pore formation was determined from liposomal swelling rates. Our results show that the efficiency of PTx binding to vesicles increases dramatically with decreasing pH. In general, the insertion efficiency correlated with the binding efficiency. At pH 4, we noted a slight decrease in binding below the melting point (23 degrees C) of the target vesicles. Not only was PTx able to insert into frozen bilayers, but the efficiency of penetration at 0 degrees C was actually somewhat higher than expected based on binding efficiency. Liposome swelling assays analyzed by the Renkin equations indicated that PTx-liposomes made at pH 4 were permeable to solutes up to 2.8 nm in diameter. Pores of a similar size were found when the liposomes were made at pH 7, but the efficiency of pore formation at this pH was very low. Chymotrypsin fragmentation profiles of PTx depended on incubation conditions, e.g., pH, presence of NAD, reducing agents, and membranes. Liposomes containing PTx cleaved at pH 4 displayed up to 40-fold more pore activity than liposomes containing uncleaved PTx or PTx cleaved at pH 7. Pore activity at pH 7 was negligible. Addition of reducing agents caused a 50 to 60% increase in pore activity. Cleaved toxin was active in target membrane insertion even at 0 degrees C, and all of the major fragments were photolabeled.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC261124PMC
http://dx.doi.org/10.1128/iai.50.3.630-635.1985DOI Listing

Publication Analysis

Top Keywords

pore activity
12
ptx
8
pore formation
8
binding efficiency
8
reducing agents
8
ptx cleaved
8
efficiency
6
pore
5
characterization insertion
4
insertion pseudomonas
4

Similar Publications

Engineered alginate-polyethyleneimine and sludge-aluminosilicate biochar composites for greywater treatment: Performance evaluation and models for designing pilot-scale systems.

Environ Res

January 2025

Department of Environment Sciences and Engineering, The Gillings School of Global Public Health, University of North Carolina at Chapel Hill, 166 Rosenau, Campus Box # 7431, NC 27599, Chapel Hill, North Carolina, USA. Electronic address:

Greywater, originating from kitchen sinks and toilets, constitutes 75-80 % of the domestic wastewater produced in homes and can be reclaimed for non-potable uses. This study synthesized novel sludge-derived aluminosilicates and alginate-polyethyleneimine (PEI) biochar composites. The aluminosilicates offer a sustainable approach to sludge management, while alginate-polyethyleneimine presents a green biochar modification approach.

View Article and Find Full Text PDF

Pesticide contamination in wastewater poses a significant environmental challenge, driven by extensive agricultural use. This study evaluates the removal of chlorpyrifos (CPS) using sugarcane bagasse-based biochar alginate beads in a continuous fixed-bed adsorption column, achieving a remarkable 95-98% removal efficiency. Compared to conventional adsorbents like activated carbon, which typically show CPS adsorption capacities ranging from 50-70 mg g⁻ under similar conditions, the biochar alginate beads demonstrate better performance with a sorption capacity of 91.

View Article and Find Full Text PDF

Transcriptomic modifications across the genome and potential hazards of pulmonary fibrosis caused by metal-organic frameworks.

Sci Total Environ

January 2025

Engineering Research Center of Optical Instrument and System, The Ministry of Education, Shanghai Key Laboratory of Modern Optical System, Shanghai Engineering Research Center of Environmental Biosafety Instruments and Equipment, University of Shanghai for Science and Technology, Shanghai 200093, PR China; Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai 200092, PR China.

Metal-Organic Frameworks (MOFs) have shown great promise in environmental protection, owing to their exceptional properties including ultrahigh surface area and porosity, tunable pore size, and easy chemical functionalization. However, emerging evidence from experimental studies indicates that MOFs have side effects on human health due to metal ions doping, resulting in excessive reactive oxygen species (ROS) production, pro-inflammatory responses, and liver fibrosis. In this study, we investigated the impact of MOF-199 on human bronchial epithelial (HBE) cells by using transcriptome sequencing analysis.

View Article and Find Full Text PDF

In this study, a binary composite adsorbent based on activated carbon and phosphoric acid geopolymer foam (ACP) was prepared by combining phosphoric acid geopolymer (PAGP) with activated carbon (AC) and applied for the removal of methylene blue (MB). Activated carbon was thoroughly mixed with a mixture of fly ash and metakaolin in varying ratios, followed by phosphoric acid activation and thermal curing. The ACP adsorbent was characterized using scanning electron microscope (SEM), Fourier transform infrared (FTIR) spectrophotometer, X-ray diffractometer (XRD), surface area analyser (SAP), and thermogravimetric analyser (TGA).

View Article and Find Full Text PDF

A Ti-MCM-41 mesoporous molecular sieve catalyst was prepared by a hydrothermal method. Nitrogen adsorption desorption, XRD, TEM and SEM characterization results showed that the catalyst had a large specific surface area, a regular hexagonal pore structure, and titanium doping was uniformly dispersed in MCM-41 molecular sieves. The amount of titanium doping, reaction temperature, and the initial solution pH had important effects on the catalytic ozonation of dimethyl phthalate (DMP) by Ti-MCM-41.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!