Microplastics pose numerous threats to aquatic environments, yet understanding their transport mechanisms remains limited. Drawing from natural sediment research provides valuable insights to address this knowledge gap. One key dimensionless number used to describe sediment transport is the transport stage, referring to the ratio between the flow shear velocity and the particle settling velocity. However, variations in physical properties, such as shape and density, raise concerns about the applicability of existing sediment transport theories to microplastics. To address this challenge, we employed a physical modeling approach, examining 24 different nonbuoyant microplastic particles in a turbulent open channel flow. Utilizing 3D particle tracking, a total of 720 trajectories were recorded and analyzed. Microplastic particles exhibited transport modes akin to natural sediments, including rolling/sliding, saltation, and suspension. The transport stage strongly correlated with these modes, as well as with the mean forward velocity and mean position in the water column. Notably, particle shape emerged as a critical factor influencing transport dynamics. Due to their lower settling velocity, fibers tended to stay closer to the water surface with lower forward velocities compared to spheres. Based on the laboratory results, a new phase diagram for microplastics is introduced analogous to an existing diagram for sediments.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11465633PMC
http://dx.doi.org/10.1021/acs.est.4c08128DOI Listing

Publication Analysis

Top Keywords

phase diagram
8
nonbuoyant microplastic
8
transport
8
sediment transport
8
transport stage
8
settling velocity
8
microplastic particles
8
mapping microplastic
4
microplastic movement
4
movement phase
4

Similar Publications

This study presents a family of coexisting multi-scroll chaos in a network of coupled non-oscillatory neurons. The dynamics of the system are analyzed using phase portraits, basins of attraction, time series, bifurcation diagrams, and spectra of Lyapunov exponents. The coexistence of multiple bifurcation diagrams leads to a complex pattern of multi-scroll formation, which is further complicated by the presence of coexisting single-scroll attractors that merge to form multi-scroll chaos.

View Article and Find Full Text PDF

Quantum materials governed by emergent topological fermions have become a cornerstone of physics. Dirac fermions in graphene form the basis for moiré quantum matter and Dirac fermions in magnetic topological insulators enabled the discovery of the quantum anomalous Hall (QAH) effect. By contrast, there are few materials whose electromagnetic response is dominated by emergent Weyl fermions.

View Article and Find Full Text PDF

The ground states of two-species condensates with spin-1 atoms have been studied analytically and numerically. All the results from the analytical approach are checked by the latter. The [Formula: see text] channel has been neglected, where λ is the coupled spin of two different atoms.

View Article and Find Full Text PDF

Observation of magnetic skyrmion lattice in CrMnGe by small-angle neutron scattering.

Sci Rep

January 2025

Helmholtz-Zentrum Berlin für Materialien und Energie, 13109, Berlin, Germany.

Incommensurate magnetic phases in chiral cubic crystals are an established source of topological spin textures such as skyrmion and hedgehog lattices, with potential applications in spintronics and information storage. We report a comprehensive small-angle neutron scattering (SANS) study on the B20-type chiral magnet Cr[Formula: see text]Mn[Formula: see text]Ge, exploring its magnetic phase diagram and confirming the stabilization of a skyrmion lattice under low magnetic fields. Our results reveal a helical ground state with a decreasing pitch from 40 to 35 nm upon cooling, and a skyrmion phase stable in applied magnetic fields of 10-30 mT, and over an unusually wide temperature range for chiral magnets of 6 K ([Formula: see text], [Formula: see text] K).

View Article and Find Full Text PDF

Despite numerous studies of water structures at the two-dimensional water-solid interfaces, much less is known about the phase behaviors of water at the one-dimensional (1D) liquid-solid interface. In this work, the 1D interfacial water phase behavior on the outer surface of carbon nanotube-like (CNT-like) models is studied by tuning the Lennard-Jones potential parameter ε of the surface atoms at various temperatures. Extensive molecular dynamics simulations show that ice nanotubes (INTs) can be spontaneously formed on CNT-like model surfaces without nanoconfinement.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!