Wearable electronics have significantly advanced the development of highly stretchable strain sensors, which are essential for applications such as health monitoring, human-machine interfaces, and energy harvesting. Fiber-based sensors and polymeric materials are promising due to their flexibility and tunable properties, although balancing sensitivity and stretchability remains a challenge. This study introduces a novel composite strain sensor that combines poly(3-hexylthiophene) and tetrafluoro-tetracyanoquinodimethane to form a charge-transfer complex (CTC) with carbon nanotubes (CNTs) on a styrene-butadiene-styrene substrate. The CTC improves conductivity through effective charge transfer, while CNTs provide mechanical reinforcement and maintain conductive paths, preventing cracks under large strains. Purposefully introduced wrinkles in the structure enhance the detection of small strains. The sensor demonstrated a broad strain-sensing range from 0.01 to 200%, exhibiting high sensitivity to both minor and major deformations. Mechanical tests confirmed strong stress-strain performance, and electrical tests indicated significant conductivity improvements with CNT integration. These results highlight the potential of the sensor for applications in health monitoring, human-machine interfaces, and energy harvesting, effectively mimicking the tactile sensing abilities of human skin.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.4c07698 | DOI Listing |
Fluids Barriers CNS
January 2025
Medical Image Processing Department, CHU Amiens-Picardie University Hospital, Amiens, France.
Background: The pressure gradient between the ventricles and the subarachnoid space (transmantle pressure) is crucial for understanding CSF circulation and the pathogenesis of certain neurodegenerative diseases. This pressure can be approximated by the pressure difference across the aqueduct (ΔP). Currently, no dedicated platform exists for quantifying ΔP, and no research has been conducted on the impact of breathing on ΔP.
View Article and Find Full Text PDFBiol Sex Differ
January 2025
Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Seattle, WA, 98195, USA.
Background: X chromosome inactivation (XCI) is a female-specific process in which one X chromosome is silenced to balance X-linked gene expression between the sexes. XCI is initiated in early development by upregulation of the lncRNA Xist on the future inactive X (Xi). A subset of X-linked genes escape silencing and thus have higher expression in females, suggesting female-specific functions.
View Article and Find Full Text PDFPediatr Rheumatol Online J
January 2025
Department of Pediatrics, Vanderbilt University Medical Center, Monroe Carell Junior Children's Hospital at Vanderbilt, 2141 Blakemore Avenue, Nashville, TN, 37232, USA.
Background: Depression adversely affects health outcomes in patients with childhood-onset systemic lupus erythematous (cSLE). By identifying patients with depressive symptoms, we can intervene early with referrals to mental health resources and improve outcomes. The aim of our quality improvement project was to increase and maintain rates of standardized depression screening for youth with cSLE seen within our pediatric rheumatology clinic.
View Article and Find Full Text PDFBMC Cancer
January 2025
Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Peking, Beijing, 100023, People's Republic of China.
Background: Pancreatic cancer is a highly aggressive neoplasm characterized by poor diagnosis. Amino acids play a prominent role in the occurrence and progression of pancreatic cancer as essential building blocks for protein synthesis and key regulators of cellular metabolism. Understanding the interplay between pancreatic cancer and amino acid metabolism offers potential avenues for improving patient clinical outcomes.
View Article and Find Full Text PDFBMC Genomics
January 2025
Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang, Shandong, 261325, China.
Background: The evolution and development of flowers are biologically essential and of broad interest. Maize and sorghum have similar morphologies and phylogeny while harboring different inflorescence architecture. The difference in flower architecture between these two species is likely due to spatiotemporal gene expression regulation, and they are a good model for researching the evolution of flower development.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!