Nuclear overhauser enhancement is a confounding factor arising from the in vivo application of a chemical exchange saturation transfer technique in which two nuclei in close proximity undergo dipole cross-relaxation. Several studies have shown applicability and efficacy of nuclear overhauser enhancement in observing tumors and other lesions in vivo. Thus, this effect could become an emerging molecular imaging research tool for many diseases. Moreover, nuclear overhauser enhancement has the advantages of simplicity, noninvasiveness, and high resolution and has become a major focus of current research. In this review, we summarize the principles and applications of nuclear overhauser enhancement. LEVEL OF EVIDENCE: 2 TECHNICAL EFFICACY: Stage 1.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jmri.29623DOI Listing

Publication Analysis

Top Keywords

nuclear overhauser
20
overhauser enhancement
20
nuclear
5
overhauser
5
enhancement
5
advances clinical
4
clinical study
4
study nuclear
4
enhancement nuclear
4
enhancement confounding
4

Similar Publications

Probing regional glycogen metabolism in humans non-invasively has been challenging due to a lack of sensitive approaches. Here we studied human muscle glycogen dynamics post-exercise with a spatial resolution of millimeters and temporal resolution of minutes, using relayed nuclear Overhauser effect (glycoNOE) MRI. Data at 5T showed a homogeneous distribution of glycogen in resting muscle, with an average concentration of 99 ± 13 mM.

View Article and Find Full Text PDF

Altered Nigral Amide Proton Transfer Imaging Signal Concordant With Motor Asymmetry in Parkinson's Disease: A Multipool CEST MRI Study.

NMR Biomed

February 2025

Department of Radiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China.

Asymmetry is a natural characteristic of Parkinson's disease (PD), which can be used to distinguish PD from atypical parkinsonism. Chemical exchange saturation transfer (CEST) has demonstrated value in reflecting the subtle changes related to neuron loss and abnormal protein accumulation in PD but has not been used to investigate asymmetry in PD. This study aimed to examine asymmetrical changes in the mesencephalic nucleus of PD patients with motor asymmetry using four-pool CEST analysis and to explore the relationship between imaging asymmetry and motor asymmetry.

View Article and Find Full Text PDF

Introduction: Prostate cancer (PCa) management presents a multifaceted clinical challenge, intricately linking oncological considerations with cardiovascular health. Despite the recognized importance of lipid metabolism and hypertension in this interwoven relationship, their involvement in PCa development remains partially understood. This study aimed to explore variations in plasma metabolome among Sudanese PCa patients and their associated comorbidities.

View Article and Find Full Text PDF

Solid Effect Dynamic Nuclear Polarization Enhancement of >500 at 9.4 T.

J Phys Chem Lett

December 2024

Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.

Efficient polarizing agents for dynamic nuclear polarization (DNP) enhanced magic angle spinning (MAS) NMR spectroscopy are of high current interest due to the potential to significantly boost NMR sensitivity. While most efforts have centered on cross-effect (CE) or Overhauser effect (OE) mechanisms, yielding enhancement factors up to ∼300 at 9.4 T, radicals yielding solid effect (SE) DNP have seen less development.

View Article and Find Full Text PDF

In recent years, consumer demand for healthy foods containing natural food additives has increased. Eugenol (EUG) is an essential oil popular as a natural antiseptic. However, its limited water solubility, high volatility, strong odor, and fragile stability hinder its application and storage in the field of food preservation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!