Bafilomycin A1 Inhibits HIV-1 Infection by Disrupting Lysosomal Cholesterol Transport.

Viruses

Department of Microbiology, Immunology and Physiology, Center for AIDS Health Disparities Research, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA.

Published: August 2024

The productive replication of human immunodeficiency virus type 1 (HIV-1) involves intricate interactions between viral proteins and host cell machinery. However, the contributions of the lysosomal pathways for HIV-1 replication are not fully understood. The goal of this study was to determine the impact of lysosome-targeting compounds on HIV-1 replication and identify the cellular changes that are linked to HIV-1 inhibition using cell culture models of HIV-1 infection. Here, we demonstrate that the treatment of cells with various pharmacological agents known to inhibit lysosomal functions interfere with HIV-1 replication. The vacuolar ATPase (V-ATPase) inhibitor bafilomycin A1 exerted a potent inhibition of HIV-1 replication. Bafilomycin A1 inhibition of HIV-1 was independent of coreceptor tropism of HIV-1. Our data suggest that bafilomycin A1 inhibits HIV-1 at the post-integration steps of the virus life cycle, which include viral gene expression, virus assembly, and/or egress. Analysis of the cellular alterations following bafilomycin A1 treatment indicates that bafilomycin A1 causes a disruption in lysosome structure and functions. Treatment of cells with bafilomycin A1 caused an accumulation of unesterified cholesterol in lysosomes along with the expansion of the lysosomal compartments. Interestingly, the overexpression of the lysosomal cholesterol transporter Niemann-Pick type C 1 (NPC1) partially relieved bafilomycin A1 inhibition of HIV-1. Collectively, our data suggest that bafilomycin A1 inhibits HIV-1 replication in part by disrupting the lysosomal cholesterol trafficking pathway.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11435809PMC
http://dx.doi.org/10.3390/v16091374DOI Listing

Publication Analysis

Top Keywords

hiv-1 replication
20
hiv-1
13
bafilomycin inhibits
12
inhibits hiv-1
12
lysosomal cholesterol
12
inhibition hiv-1
12
bafilomycin
9
hiv-1 infection
8
disrupting lysosomal
8
treatment cells
8

Similar Publications

The gastrointestinal tract is a prominent portal of entry for HIV-1 during sexual or perinatal transmission, as well as a major site of HIV-1 persistence and replication. Elucidation of underlying mechanisms of intestinal HIV-1 infection are thus needed for the advancement of HIV-1 curative therapies. Here, we present a human 2D intestinal immuno-organoid system to model HIV-1 disease that recapitulates tissue compartmentalization and epithelial-immune cellular interactions.

View Article and Find Full Text PDF

Two Disaccharide-Bearing Polyethers, K-41B and K-41Bm, Potently Inhibit HIV-1 via Mechanisms Different from That of Their Precursor Polyether, K-41A.

Curr Issues Mol Biol

November 2024

Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning 530021, China.

The screening of novel antiviral agents from marine microorganisms is an important strategy for new drug development. Our previous study found that polyether K-41A and its analog K-41Am, derived from a marine Streptomyces strain, exhibit anti-HIV activity by suppressing the activities of HIV-1 reverse transcriptase (RT) and its integrase (IN). Among the K-41A derivatives, two disaccharide-bearing polyethers-K-41B and K-41Bm-were found to have potent anti-HIV-1 activity in vitro.

View Article and Find Full Text PDF

HIV-1 unspliced RNA serves two distinct functions during viral replication: it is packaged into particles as the viral genome, and it is translated to generate Gag/Gag-Pol polyproteins required for virus assembly. Recent studies have demonstrated that in cultured cells, HIV-1 uses multiple transcription start sites to generate several unspliced RNA species, including two major transcripts with three and one 5' guanosine, referred to as 3G and 1G RNA, respectively. Although nearly identical, 1G RNA is selected over 3G RNA to be packaged as the virion genome, indicating that these RNA species are functionally distinct.

View Article and Find Full Text PDF

Broadly neutralizing antibodies (bnAbs) against HIV-1 have been shown to protect from systemic infection. When employing a novel challenge virus that uses HIV-1 Env for entry into target cells during the first replication cycle, but then switches to SIV Env usage, we demonstrated that bnAbs also prevented mucosal infection of the first cells. However, it remained unclear whether antibody Fc-effector functions contribute to this sterilizing immunity.

View Article and Find Full Text PDF

Despite advancements in antiretroviral therapy (ART) that reduces the viral load to undetectable levels and improve CD4 T cell counts, viral eradication has not been achieved due to HIV-1 persistence in resting CD4 T-cells. We, therefore, characterized the gene, which is essential for HIV-1 replication and pathogenesis, from 20 virologically controlled aging individuals with HIV (HIV) on long-term ART and improved CD4 T-cell counts, with a particular focus on older individuals. Peripheral blood mononuclear cell genomic DNA from HIV were used to amplify gene by polymerase chain reaction followed by nucleotide sequencing and analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!