Melatonin, as an endocrine neurotransmitter, can promote the development of the ovary. Meanwhile, it also has protective effect on the ovary as an antioxidant. Thyroid hormone (TH) is essential for normal human reproductive function. Many studies have shown that 3,5,3'-triiodothyronine (T) regulates the development of ovarian granulosa cells. However, little is known about the specific mechanisms by which melatonin combines with T to regulate granulosa cell development. The aim of present study was to investigate the effects and the possible mechanisms of melatonin and T on ovarian granulosa cell development. In the present study, cell development and apoptosis were detected by CCK8, EdU and TUNEL, respectively. The levels of related proteins were analyzed by Western blotting. The results showed that oxidative stress (OS) and reactive oxygen species (ROS) were induced by HO in granulosa cells, and cell apoptosis was also increased accompanied with the decreased cellular proliferation and viability. Melatonin protects granulosa cells from HO-induced apoptosis and OS by downregulating ROS levels, especially in the presence of T. Co-treatment of cell with melatonin and T also promotes the expression of GRP78 and AMH, while inhibiting CHOP, Caspase-3, and P16. It was demonstrated that melatonin alone or in combination with T had positive effect on the development of granulosa cells. In addition, the AMPK/SIRT1 signaling pathway is involved in the process of melatonin/T promoting granulosa cell development.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11435325PMC
http://dx.doi.org/10.3390/nu16183085DOI Listing

Publication Analysis

Top Keywords

granulosa cells
20
cell development
16
granulosa cell
12
development
8
granulosa
8
ovarian granulosa
8
mechanisms melatonin
8
melatonin
6
cell
6
cells
5

Similar Publications

Serum progesterone may increase prior to ovulation trigger in in vitro fertilization patients, jeopardizing endometrial receptivity and therefore live birth rate. Recombinant FSH (rFSH) promotes progesterone production from human granulosa cells. Yet, the role of FSH on progesterone production need deeper exploration.

View Article and Find Full Text PDF

A Dynamic Shift in Estrogen Receptor Expression During Granulosa Cell Differentiation in the Ovary.

Endocrinology

January 2025

Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, 2001 South Lincoln Avenue, Urbana, IL 61802, USA.

This study uncovers a dynamic shift in estrogen receptor expression during granulosa cell (GC) differentiation in the ovary, highlighting a transition from estrogen receptor alpha (ESR1) to estrogen receptor beta (ESR2). Using a transgenic mouse model with Esr1-iCre-mediated Esr2 deletion, we demonstrate that ESR2 expression is absent in GCs derived from ESR1-expressing ovarian surface epithelium (OSE) cells. Single-cell analysis of the OSE-GC lineage reveals a developmental trajectory from Esr1-expressing OSE cells to Foxl2-expressing pre-GCs, culminating in GCs exclusively expressing Esr2.

View Article and Find Full Text PDF

Polycystic ovary syndrome (PCOS) is the leading cause of anovulatory infertility among women of reproductive age, yet the range of effective treatment options remains limited. Our previous study revealed that reduced levels of nicotinamide adenine dinucleotide (NAD) in ovarian granulosa cells (GCs) of women with PCOS resulted in the accumulation of reactive oxygen species (ROS) and mitochondrial dysfunction. However, it is still uncertain whether increasing NAD levels in the ovaries could improve ovarian function in PCOS.

View Article and Find Full Text PDF

A limited number of female germ cells support reproduction in many mammals. The follicle, composed of oocytes and supporting granulosa cells, forms the basis of oogenesis. Crosstalk between oocytes and granulosa cells is essential for the formation, dormancy, re-awakening, and maturation of oocytes.

View Article and Find Full Text PDF

Dexlansoprazole acts as a disruptor of the aryl hydrocarbon receptor and ITE.

Food Chem Toxicol

January 2025

Department of Biochemical Science and Technology, National Chiayi University, Chiayi, 60004, Taiwan, ROC. Electronic address:

Dexlansoprazole, a proton pump inhibitor, is commonly used to treat gastro-oesophageal reflux disease and erosive esophagitis. The activated aryl hydrocarbon receptor (AhR) functions as a transcription factor by binding to the aryl hydrocarbon response element (AHRE) of its target genes, with cytochrome P450 (CYP) 1A1 being the most well-known target. In this study, we demonstrated that dexlansoprazole stimulates AhR activity, leading to increased CYP1A1 expression.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!