A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Functional Identification and Regulatory Active Site Screening of the Gene of . | LitMetric

(L.) Schott has anti-inflammatory and antioxidant properties, and terpenoids are important components of its active constituents. The methyl-D-erythritol 4-phosphate (MEP) pathway is one of the major pathways for the synthesis of terpene precursors in plants, and 1-deoxy-D-xylulose-5-phosphate synthase (DXS) is the first rate-limiting enzyme in this pathway. has been shown to be associated with increased stress tolerance in plants. In this experiment, two genes were extracted from the transcriptome and named and . Based on phylogenetic tree and conserved motif analyses, DXS was shown to be highly conserved evolutionarily and its localization to chloroplasts was determined by subcellular localization. Prokaryotic expression results showed that the number and growth status of recombinant colonies were better than the control under 400 mM NaCl salt stress and 800 mM mannitol-simulated drought stress. In addition, the and transgenic tobacco plants showed improved resistance to drought and salt stress. and responded strongly to methyl jasmonate (MeJA) and PEG-mimicked drought stress following exogenous hormone and abiotic stress treatments of . The transcriptional active sites were investigated by dual luciferase and GUS staining assays, and the results showed that the STRE element (AGGGG), the ABRE element (ACGTGGC), and the MYC element (CATTTG) were the important transcriptional active sites in the promoters of the two genes, which were closely associated with hormone response and abiotic stress. These results suggest that the gene of plays an important role in hormone signaling and response to stress. This study provides a reference for analyzing the molecular mechanisms of stress tolerance in .

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11435244PMC
http://dx.doi.org/10.3390/plants13182647DOI Listing

Publication Analysis

Top Keywords

stress
9
stress tolerance
8
salt stress
8
drought stress
8
abiotic stress
8
transcriptional active
8
active sites
8
functional identification
4
identification regulatory
4
active
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!