Industrial waste and sewage deposit heavy metals into the soil, where they can remain for long periods. Although there are several methods to manage heavy metals in agricultural soil, microorganisms present a promising and effective solution for their detoxification. We isolated a rhizofungus, (GenBank Acc. No. KT310979.1), from L., and investigated its growth-promoting and metal detoxification capabilities. The isolated fungus was evaluated for its ability to mitigate lead (25 and 75 ppm) and copper (100 and 200 ppm) toxicity in L. seedlings. The experiment utilized a completely randomized design with three replicates for each treatment. successfully colonized the roots of wheat seedlings, even in the presence of heavy metals, and significantly enhanced plant growth. The isolate effectively alleviates lead and copper stress in wheat seedlings, as evidenced by increases in shoot length (142%), root length (98%), fresh weight (24%), dry weight (73%), protein content (31%), and sugar content (40%). It was observed that wheat seedlings possess a basic defense system against stress, but it was insufficient to support normal growth. Fungal inoculation strengthened the host's defense system and reduced its exposure to toxic heavy metals. In treated seedlings, exposure to heavy metals significantly upregulated MT1 gene expression, which aided in metal detoxification, enhanced antioxidant defenses, and maintained metal homeostasis. A reduction in metal exposure was observed in several areas, including normalizing the activities of antioxidant enzymes that had been elevated by up to 67% following exposure to Pb (75 mg/kg) and Cu (200 mg/kg). Heavy metal exposure elevated antioxidant levels but also increased ROS levels by 86%. However, with colonization, ROS levels stayed within normal ranges. This decrease in ROS was associated with reduced malondialdehyde (MDA) levels, enhanced membrane stability, and restored root architecture. In conclusion, rhizofungal colonization improved metal tolerance in seedlings by decreasing metal uptake and increasing the levels of metal-binding metallothionein proteins.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11435276PMC
http://dx.doi.org/10.3390/plants13182643DOI Listing

Publication Analysis

Top Keywords

heavy metals
20
wheat seedlings
12
metal
8
heavy metal
8
metal detoxification
8
defense system
8
metal exposure
8
ros levels
8
heavy
7
seedlings
6

Similar Publications

Heavy metal(loid)s accumulation and human health risk assessment in wheat after long-term application of various urban and rural organic fertilizers.

Sci Total Environ

January 2025

Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China. Electronic address:

Composting urban and rural wastes into organic fertilizers for land application is considered the best way to dispose of and recycle waste resources. However, there are some concerns about the long-term effects of applying various organic fertilizers on soils, food safety, and health risks derived from heavy metal(loid)s (HMs). A long-term field experiment was conducted to evaluate the effects of continuous application of chicken manure compost (CM), sewage sludge compost (SSC), and domestic waste compost (DWC) for wheat on the accumulation, transfer, and health risks of HMs.

View Article and Find Full Text PDF

This work established the cytotoxic, antioxidant and anticancer effects of copper nanoparticles (CuNPs) manufactured with fennel extract, especially on non-small cell lung cancer (NSCLC) as well. CuNPs caused cytotoxicity in a dose-dependent manner for two NSCLC cell lines, A549 and H1650. At 100 μg/ml, CuNPs reduced cell viability to 70% in A549 cells and 65% in H1650 cells.

View Article and Find Full Text PDF

A dual-mode detection platform utilizing colorimetric and Raman was developed based on the exponential amplification reaction (EXPAR) strategy and a "core-satellite" structure constructed by bimetallic nanozymes to detect chloramphenicol (CAP). Initially, DNA-gated metal-organic frameworks (MOFs) incorporating cascaded amplification were used to be nanocarriers for the colorimetric and Raman reporter molecules (3,3',5,5'-tetramethylbiphenyl; TMB). Subsequently, assembled DNA served as gatekeepers to create a stimulus-responsive DNA-gated MOF (TMB@DNA/MOF).

View Article and Find Full Text PDF

Researchers have reported that Bacillus megaterium BM18-2 reduces Cd toxicity in Hybrid Pennisetum, but understanding the interaction between plants and associated endophytes is crucial for understanding phytoremediation strategies under heavy metal stress. The current study aims to monitor the colonization patterns of GFP-labeled endophytic bacteria BM18-2 on Hybrid Pennisetum grass. Additionally, it will monitor Cd's effect on plant bacterial colonization.

View Article and Find Full Text PDF

Biosorption performance toward Co(II) and Cd(II) by irradiated Fusarium solani biomass.

Environ Geochem Health

January 2025

Soil and Water Research Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo, 13759, Egypt.

Fusarium solani biomass plays a significant role in water pollution remediation due to its ability to sequester heavy metals, particularly cobalt (Co(II)) and cadmium (Cd(II)), which pose severe environmental and health risks. This study aimed to identify fungi from sewage-contaminated sites and evaluate their efficiency in absorbing and reducing Co(II) and Cd(II) ions. The biosorption potential of irradiated Fusarium solani biomass for removing Co(II) and Cd(II) ions from aqueous solutions was investigated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!