The impact of degradation on plastics is a critical factor influencing their properties and behavior, particularly evident in polyethylene (PE) and polypropylene (PP) and their blends. However, the effect of photoaging and thermal degradation, specifically within recycled polyethylene (rPE) and recycled polypropylene (rPP), on the thermo-mechanical and thermostability aspects of these blends remains unexplored. To address this gap, a range of materials, including virgin polyethylene (vPE), recycled polyethylene (rPE), virgin polypropylene (vPP), recycled polypropylene (rPP), and their blends with different ratios, were comprehensively investigated. Through a systematic assessment encompassing variables such as melting flow index (MFI), functional groups, mechanical traits, crystallization behavior, microscopic morphology, and thermostability, it was found that thermo-oxidative degradation generated hydroxyl and carboxyl functional groups in rPE and rPP. Optimal mechanical properties were achieved with a 6:4 mass ratio of rPE to rPP, as validated by FTIR spectroscopy and microscopic morphology. By establishing the chemical model, the changes in the system with an rPE-rPP ratio of 6:4 and 8:2 were monitored by the molecular simulation method. When the rPE-rPP ratio was 6:4, the system's energy was lower, and the number of hydrogen bonds was higher, which also confirmed the above experimental results. Differential scanning calorimetry revealed an increased crystallization temperature in rPE, a reduced crystallization peak area in rPP, and a diminished crystallization capacity in rPE/rPP blends, with rPP exerting a pronounced influence. This study plays a pivotal role in enhancing recycling efficiency and reducing production costs for waste plastics, especially rPE and rPP-the primary components of plastic waste. By uncovering insights into the degradation effects and material behaviors, our research offers practical pathways for more sustainable waste management. This approach facilitates the optimal utilization of the respective performance characteristics of rPE and rPP, enabling the development of highly cost-effective rPE/rPP blend materials and promoting the efficient reuse of waste materials.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11434545PMC
http://dx.doi.org/10.3390/molecules29184499DOI Listing

Publication Analysis

Top Keywords

recycled polyethylene
12
recycled polypropylene
12
rpe rpp
12
impact degradation
8
degradation recycled
8
polyethylene rpe
8
polypropylene rpp
8
functional groups
8
microscopic morphology
8
rpe-rpp ratio
8

Similar Publications

The EFSA Panel on Food Contact Materials (FCM) assessed the safety of the recycling process NGR LSP (EU register number RECYC328). The input is hot washed and dried poly(ethylene terephthalate) (PET) flakes mainly originating from collected post-consumer PET containers, with no more than 5% PET from non-food consumer applications. The flakes are dried (step 2), melted in an extruder (step 3) and decontaminated during a melt-state polycondensation step under high temperature and vacuum (step 4).

View Article and Find Full Text PDF

This research explores how varying proportions of virgin polyethylene terephthalate (vPET) and recycled polyethylene terephthalate (rPET) in vPET-rPET blends, combined with preform thermal conditions during the stretch blow molding (SBM) process, influence PET bottles' microscopic characteristics. Key metrics such as viscosity, density, crystallinity, amorphous phase relaxation, and microcavitation were assessed using response surface methodology (RSM). Statistical analysis, including Analysis of variance (ANOVA) and its power, supported the interpretation of results.

View Article and Find Full Text PDF
Article Synopsis
  • The paper focuses on optimizing FDM (Fused Deposition Modeling) parameters, specifically layer height (L) and infill density percentage (I), for creating tensile and compression samples from recycled PETG and ASA materials.
  • The study employs value analysis to balance mechanical strength and production cost, revealing that layer height primarily affects tensile samples made from rPETG, while infill density is crucial for rASA samples.
  • Ultimately, the research identifies optimal FDM settings (L = 0.20 mm and I = 100%) for producing parts from recycled materials, supporting circular economy practices in manufacturing.
View Article and Find Full Text PDF

With the growing interest in nanofibers and the urgent need to address environmental concerns associated with plastic waste, there is an increasing focus on using recycled materials to develop advanced healthcare solutions. This study explores the potential of recycled poly(ethylene terephthalate) (PET) nanofibers, functionalized with copper-enhanced alginate, for applications in wound dressings. Nanofibers with desirable antimicrobial properties were developed using chemical recycling and electrospinning techniques, offering a sustainable and effective option for managing wound infections and promoting healing.

View Article and Find Full Text PDF

Polyethylene terephthalate (PET) is a widely utilized synthetic polymer, favored in various applications for its desirable physicochemical characteristics and widespread accessibility. However, its extensive utilization, coupled with improper waste disposal, has led to the alarming pollution of the environment. Thus, recycling PET products is essential for diminishing global pollution and turning waste into meaningful materials.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!