AI Article Synopsis

  • - The objective of the study was to optimize and evaluate hyaluronic acid-modified ginsenoside Rb1 self-assembled nanoparticles (HA@GRb1@CS NPs) for treating cardiovascular diseases related to inflammation and oxidative stress.
  • - The preparation of HA@GRb1@CS NPs used specific designs to find the best conditions, and physical and biological evaluations confirmed their effectiveness in drug delivery, highlighting their anti-inflammatory and antioxidant properties.
  • - The optimal formulation resulted in nanoparticles that were 126.4 nm in size and demonstrated abilities to reduce oxidative damage and inflammation in heart cells during laboratory testing.

Article Abstract

(1) Objective: To optimize the preparation process of hyaluronic acid-modified ginsenoside Rb1 self-assembled nanoparticles (HA@GRb1@CS NPs), characterize and evaluate them in vitro, and investigate the mechanism of action of HA@GRb1@CS NPs in treating cardiovascular diseases (CVDs) associated with inflammation and oxidative stress. (2) Methods: The optimal preparation process was screened through Plackett-Burman and Box-Behnken designs. Physical characterization of HA@GRb1@CS NPs was conducted using transmission electron microscopy, Fourier-transform infrared spectroscopy, X-ray diffraction, and differential scanning calorimetry. Stability experiments, in vitro drug release studies, and lyophilisate selection were performed to evaluate the in vitro performance of HA@GRb1@CS NPs. The anti-inflammatory and antioxidant capabilities of HA@GRb1@CS NPs were assessed using H9c2 and RAW264.7 cells. Additionally, bioinformatics tools were employed to explore the mechanism of action of HA@GRb1@CS NPs in the treatment of CVDs associated with inflammation and oxidative stress. (3) Results: The optimal preparation process for HA@GRb1@CS NPs was achieved with a CS concentration of 2 mg/mL, a TPP concentration of 2.3 mg/mL, and a CS to TPP mass concentration ratio of 1.5:1, resulting in a particle size of 126.4 nm, a zeta potential of 36.8 mV, and a PDI of 0.243. Characterization studies confirmed successful encapsulation of the drug within the carrier, indicating successful preparation of HA@GRb1@CS NPs. In vitro evaluations demonstrated that HA@GRb1@CS NPs exhibited sustained-release effects, leading to reduced MDA (Malondialdehyde) content and increased SOD (Superoxide Dismutase) content in oxidatively damaged H9c2 cells. Furthermore, it showed enhanced DPPH (2,2-Diphenyl-1-picrylhydrazyl) and ABTS [2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)] free radical scavenging rates and inhibited the release of inflammatory factors NO (Nitric Oxide) and IL-6 (Interleukin-6) from RAW264.7 cells. (4) Conclusions: The HA@GRb1@CS NPs prepared in this study exhibit favorable properties with stable quality and significant anti-inflammatory and antioxidant capabilities. The mechanisms underlying their therapeutic effects on CVDs may involve targeting STAT3, JUN, EGFR, CASP3, and other pathways regulating cell apoptosis, autophagy, anti-lipid, and arterial sclerosis signaling pathways.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11433718PMC
http://dx.doi.org/10.3390/molecules29184425DOI Listing

Publication Analysis

Top Keywords

ha@grb1@cs nps
40
preparation process
12
ha@grb1@cs
10
nps
10
hyaluronic acid-modified
8
acid-modified ginsenoside
8
ginsenoside rb1
8
rb1 self-assembled
8
self-assembled nanoparticles
8
treating cardiovascular
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!