The health-promoting properties of vitamin K stimulate the growing interest in this compound, which translates into the development of new analytical methodologies for its determination. New, more efficient methods of its isolation are sought, paying increasingly more attention to the methods within currently available extraction techniques that, owing to the optimization of the process, not only increase the extraction efficiency but are also economical and environmentally friendly. This article proposes a procedure for the extraction and analysis of one of the vitamin K vitamers, i.e., vitamin K1, using PLE and LC-MS/MS. It has been shown that the PLE technique can be optimized with a mathematical model-accelerating and reducing the costs of the extraction process-which, together with process automation, bodes well for industrial applications. The optimized process was used to extract vitamin K1 from various vegetables, showing very different contents of the test compound ranging from 1.22 to 114.30 µg/g dry weight for avocado and spinach, respectively. In addition, by showing the effect of water within the material subjected to extraction on the variable yield of vitamin K1, attention was drawn to the need to standardize the analytical methods used in assessing the quality of food products.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11434174 | PMC |
http://dx.doi.org/10.3390/molecules29184420 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!