Elemental analysis is a fundamental method for determining the carbon, hydrogen, nitrogen, sulphur, and oxygen (CHNSO) contents in organic materials. Automated conventional elemental analysers are commonly used for CHNSO determinations, but they face challenges when analysing volatile organic liquids due to sample losses. This present study explores the combination of gas chromatography-mass spectrometry (GC/MS) and gas chromatography-flame ionisation detection (GC/FID) as a more accurate alternative method for elemental analysis of such liquids. Six different liquid samples containing various organic compounds have been analysed using both a conventional elemental analyser (Method 1) and the combined GC/MS-GC/FID method (Method 2). The results showed that Method 1 gave results with significant errors for carbon (by more than ±10 wt%) and oxygen (by up to ±30 wt%) contents due to volatile losses leading to inaccurate "oxygen-by-difference" determinations. In contrast, Method 2 gave more accurate and consistently representative elemental data in a set of simulated samples when compared to theoretical elemental data. This work proposes the use of the GC/FID method as a reliable alternative for CHNSO analysis of volatile organic liquids and suggests that employing the GC/FID technique can mitigate the common errors associated with conventional CHNSO analysis of such samples. However, successfully using Method 2 would depend on the skills and experience of users in qualitative and quantitative organic chemical analyses by gas chromatography.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11434348 | PMC |
http://dx.doi.org/10.3390/molecules29184346 | DOI Listing |
Front Allergy
January 2025
Department of Biomedical Science and Technology, School of Biological Sciences, Ramakrishna Mission Vivekananda Educational and Research Institute (RKMVERI), Kolkata, India.
Increasing evidence demonstrates a robust link between environmental pollutants and allergic reactions, with air and indoor pollution exacerbating respiratory allergies and climate change intensifying seasonal allergies. Comprehensive action, including government regulations, public awareness, and individual efforts, is essential to mitigate pollution's impact on allergies and safeguard public health and ecological balance. Recent findings indicate a strong correlation between environmental pollutants and allergic reactions, with air pollution from vehicular emissions and industrial activities exacerbating respiratory allergies like asthma and allergic rhinitis.
View Article and Find Full Text PDFFront Mol Biosci
January 2025
Vienna Metabolomics Center (VIME), University of Vienna, Vienna, Austria.
Cancer is ranked as the top cause of premature mortality. Volatile organic compounds (VOCs) are produced from catalytic peroxidation by reactive oxygen species (ROS) and have become a highly attractive non-invasive cancer screening approach. For future clinical applications, however, the correlation between cancer hallmarks and cancer-specific VOCs requires further study.
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China.
Endophytic fungi live in healthy plant tissues and organs and are a major source of natural bioactive compounds. In this study, we found that an endophytic fungus, CEF642, isolated from the healthy cotton roots, suppressed by up to 53% after 15 days in a confrontation culture. Genome sequencing of CEF642 and mass spectrometry study of its metabolites were used to identify its primary antagonists.
View Article and Find Full Text PDFJ Chem Ecol
January 2025
Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN, USA.
Thousand cankers disease (TCD) is a pathosystem comprised of Juglandacea spp., a pathogenic fungus Geosmithia morbida, and an insect vector, the walnut twig beetle (WTB) (Pityophthorus juglandis). Of the North American Juglans species, Juglans nigra is the most susceptible to TCD and has resulted in significant decline and mortality of urban and plantation trees in the western United States.
View Article and Find Full Text PDFJ Biosci Bioeng
January 2025
The United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan; Faculty of Agriculture, Saga University, 1 Honjo, Saga 840-8502, Japan. Electronic address:
In modern Japanese soy sauce production, sealed outdoor fermentation tanks are used to ferment moromi with halotolerant starter cultures: the lactic acid bacterium Tetragenococcus halophilus and yeasts Wickerhamiella versatilis and Zygosaccharomyces rouxii. T. halophilus and W.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!