Chitin is the second most prevalent polysaccharide found in nature, following cellulose. Amino-oligosaccharides, the byproducts of chitin degradation, exhibit favorable biological properties and potential for various uses. Chitinases play a crucial function in the breakdown of chitin, and their exceptionally effective production has garnered significant interest. Here, in this study, the exochitinase PbChiA, obtained from , was recombinantly produced and immobilized using the CotG surface protein of WB800N. The resulting strain WB800N pHS-CotG-Chi exhibited exceptional heat stability and efficacy across various pH levels. The chitinolytic activity of the enzyme, which had been isolated and immobilized on the spore surface, was measured to be approximately 16.06 U/mL. Including Ni, Zn, and K, and EDTA at various concentration levels in the reaction system, has significantly enhanced the activity of the immobilized enzyme. The immobilized exochitinase demonstrated a notable rate of recycling, as the recombinant spores sustained a relative enzyme activity of more than 70% after three cycles and 62.7% after four cycles. These findings established a basis for additional investigation into the role and practical use of the immobilized bacterial exochitinase in industry.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11433828PMC
http://dx.doi.org/10.3390/molecules29184302DOI Listing

Publication Analysis

Top Keywords

immobilized
5
display bacterial
4
bacterial exochitanase
4
exochitanase spores
4
spores improved
4
enzyme
4
improved enzyme
4
enzyme stability
4
stability recyclability
4
recyclability chitin
4

Similar Publications

Biomimetic calcification is a micro-crystallization process that mimics the natural biomineralization process, where biomacromolecules regulate the formation of inorganic minerals. In this study, it is presented that a protein-assisted biomimetic calcification method for the in situ synthesis of nitrogen-doped metal-organic framework (MOF) materials. A series of unique core-shell structures are created by utilizing proteins as templates and guiding agents in the nucleation step, creating ideal conditions for shell growth.

View Article and Find Full Text PDF

Digital Health Technologies for Optimising Treatment and Rehabilitation Following Surgery: Device-Based Measurement of Sling Posture and Adherence.

Sensors (Basel)

December 2024

Assessment of Movement Behaviours (AMBer), Leicester Lifestyle and Health Research Group, Diabetes Research Centre, University of Leicester, Leicester LE5 4PW, UK.

Background: Following shoulder surgery, controlled and protected mobilisation for an appropriate duration is crucial for appropriate recovery. However, methods for objective assessment of sling wear and use in everyday living are currently lacking. In this pilot study, we aim to determine if a sling-embedded triaxial accelerometer and/or wrist-worn sensor can be used to quantify arm posture during sling wear and adherence to sling wear.

View Article and Find Full Text PDF

The rapid and reliable detection of pathogenic bacteria remains a significant challenge in clinical microbiology. Consequently, the demand for simple and rapid techniques, such as antimicrobial peptide (AMP)-based sensors, has recently increased as an alternative to traditional methods. Melittin, a broad-spectrum AMP, rapidly associates with the cell membranes of various gram-positive and gram-negative bacteria.

View Article and Find Full Text PDF

Development of a Novel Electrochemical Immunosensor for Rapid and Sensitive Detection of Sesame Allergens Ses i 4 and Ses i 5.

Foods

January 2025

School of Food and Biological Engineering, Engineering Research Center of Bio-Process of Ministry of Education, Anhui Province Laboratory of Agricultural Products Modern Processing, Hefei University of Technology, Hefei 230009, China.

Due to their lipophilicity and low content, the major sesame oleosin allergens, Ses i 4 and Ses i 5, are challenging to identify using conventional techniques. Then, a novel unlabeled electrochemical immunosensor was developed to detect the potential allergic activity of sesame oleosins. The voltammetric immunosensor was constructed using a composite of gold nanoparticles (AuNPs), polyethyleneimine (PEI), and multi-walled carbon nanotubes (MWCNTs), which was synthesized in a one-pot process and modified onto a glass carbon electrode to enhance the catalytic current of the oxygen reduction reaction.

View Article and Find Full Text PDF

The immobilisation of essential oil components (EOCs) on food-grade supports is a promising strategy for preserving liquid foods without the drawbacks of direct EOC addition such as poor solubility, high volatility, and sensory alterations. This study presents a novel method for covalently immobilising EOCs, specifically thymol and carvacrol, on SiO particles (5-15 µm) using the Mannich reaction. This approach simplifies conventional covalent immobilisation techniques by reducing the steps and reagents while maintaining antimicrobial efficacy and preventing compound migration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!