Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Phosphodiesterase (PDE) inhibitors are gaining interest in the context of pulmonary pathologies. In particular, the PDE3 inhibitor enoximone (ENXM) has shown potential relative to the cure of asthma, chronic obstructive pulmonary disease (COPD), and acute respiratory distress syndrome (ARDS). Despite its administration via inhalation being planned for use against COVID-19 related ARDS (C-ARDS), presently, no inhalable medicine containing ENXM is available.
Objectives: This study aims to develop a new formulation suitable for pulmonary administration of ENXM.
Methods: A solution for nebulization, based on the complex between ENXM and Hydroxypropyl-β-Cyclodextrin (HPβCD) (ENXM/HPβCD) is developed. The obtained solution is characterized in terms of aerodynamic distributions and biopharmaceutical features.
Results: The evaluation of the aerosol droplets indicates a good bronchi-lung distribution of the drug. Biological evaluations of the air-liquid interface (ALI) in an in vitro lung cell model demonstrates that ENXM/HPβCD is capable of a local direct effect, increasing intracellular cyclic adenosine monophosphate (cAMP) levels and protecting from oxidative stress.
Conclusions: This study offers a promising advance in the optimization of enoximone delivery to the lungs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11435411 | PMC |
http://dx.doi.org/10.3390/pharmaceutics16091221 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!