A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Prediction of Wear Rate of Glass-Filled PTFE Composites Based on Machine Learning Approaches. | LitMetric

Wear is induced when two surfaces are in relative motion. The wear phenomenon is mostly data-driven and affected by various parameters such as load, sliding velocity, sliding distance, interface temperature, surface roughness, etc. Hence, it is difficult to predict the wear rate of interacting surfaces from fundamental physics principles. The machine learning (ML) approach has not only made it possible to establish the relation between the operating parameters and wear but also helps in predicting the behavior of the material in polymer tribological applications. In this study, an attempt is made to apply different machine learning algorithms to the experimental data for the prediction of the specific wear rate of glass-filled PTFE (Polytetrafluoroethylene) composite. Orthogonal array L25 is used for experimentation for evaluating the specific wear rate of glass-filled PTFE with variations in the operating parameters such as applied load, sliding velocity, and sliding distance. The experimental data are analysed using ML algorithms such as linear regression (LR), gradient boosting (GB), and random forest (RF). The R value is obtained as 0.91, 0.97, and 0.94 for LR, GB, and RF, respectively. The R value of the GB model is the highest among the models, close to 1.0, indicating an almost perfect fit on the experimental data. Pearson's correlation analysis reveals that load and sliding distance have a considerable impact on specific wear rate as compared to sliding velocity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11435934PMC
http://dx.doi.org/10.3390/polym16182666DOI Listing

Publication Analysis

Top Keywords

wear rate
20
rate glass-filled
12
glass-filled ptfe
12
machine learning
12
load sliding
12
sliding velocity
12
sliding distance
12
experimental data
12
specific wear
12
velocity sliding
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!