Performance Investigation of PSF-nAC Composite Ultrafiltration Membrane for Protein Separation.

Polymers (Basel)

Centre of Advanced Manufacturing & Material Processing (AMMP Centre), Department of Mechanical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia.

Published: September 2024

AI Article Synopsis

  • Ultrafiltration membranes used in wastewater treatment face issues like fouling and reduced flux, but using nano-activated carbon (nAC) can improve their performance.
  • The study developed composite polysulfone (PSF) membranes with varying nAC concentrations and tested their properties, including morphology and water flux.
  • Results showed that 6 wt.% nAC membranes had significantly enhanced water flux and hydrophilicity without compromising protein rejection, indicating that nAC can optimize ultrafiltration membrane performance.

Article Abstract

As a promising wastewater treatment technology, ultrafiltration membranes face challenges related to fouling and flux reduction. To enhance these membranes, various strategies have been explored. Among them, the incorporation of nano-activated carbon (nAC) powder has emerged as an effective method. In this study, composite polysulfone (PSF) ultrafiltration membranes were fabricated using nAC powder at concentrations ranging from 0 to 8 wt.%. These membranes underwent comprehensive investigation, including assessments of membrane morphology, hydrophilicity, pure water flux, equilibrium water content, porosity, average pore size, and protein separation. The addition of activated carbon improved several desirable properties. Specifically, the hydrophilicity of the PSF membranes was enhanced, with the contact angle reduced from 69° to 58° for 8 wt.% of nAC composite membranes compared to the pristine PSF membrane. Furthermore, the water flux test revealed that 6 wt.% activated carbon-based membranes exhibited the highest flux, with a nearly 3 times improvement at 2 bar. Importantly, this enhancement did not compromise the protein rejection. Additionally, the introduction of nAC had a significant effect on the membrane's pore size by improving lysozyme rejection up to 40%. Overall, these findings will guide the selection of the optimal concentration of nAC for PSF ultrafiltration membranes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11435571PMC
http://dx.doi.org/10.3390/polym16182654DOI Listing

Publication Analysis

Top Keywords

ultrafiltration membranes
12
protein separation
8
membranes
8
nac powder
8
psf ultrafiltration
8
water flux
8
pore size
8
nac
5
performance investigation
4
investigation psf-nac
4

Similar Publications

Mitigation of irreversible membrane biofouling by CNTs-PVDF conductive composite membrane.

Environ Res

December 2024

School of Environmental Science and Engineering, Tiangong University, State Key Laboratory of Separation Membranes and Membrane Processes, Binshui West Road 399, Xiqing District, Tianjin, 300387, PR China; Cangzhou Institute of Tiangong University, Cangzhou 061000, China. Electronic address:

Biofouling has been one of the major challenges impacting the long-term stable operation of ultrafiltration processes. Irreversible biofouling is considerably more harmful than reversible biofouling. Conductive membrane, as a new technology to effectively mitigate membrane fouling, lack research of controlling irreversible biofouling.

View Article and Find Full Text PDF

The valorization of ultra-concentrated seawater brines, named bitterns, requires preliminary purification processes, such as membrane filtration, before they can be fully exploited. This study investigates the performance of an ultrafiltration pilot plant aimed at separating organic matter and large particles from real bitterns. An empirical model for the bittern viscosity was developed to better characterize the membrane.

View Article and Find Full Text PDF

This study investigated membrane fouling issues associated with the operation of a submerged ultrafiltration membrane in a drinking water treatment plant (DWTP) and optimized the associated chemical cleaning strategies. By analyzing the surface components of the membrane foulant and the compositions of the membrane cleaning solution, the primary causes of membrane fouling were identified. Membrane fouling control strategies suitable for the DWTP were evaluated through chemical cleaning tests conducted for bench-scale, full-scale, and engineering cases.

View Article and Find Full Text PDF

Peritoneal dialysis (PD) serves as a home-based kidney replacement therapy with increasing utilization across the globe. However, long-term use of high-glucose-based PD solution incites repeated peritoneal injury and inevitable peritoneal fibrosis, thus compromising treatment efficacy and resulting in ultrafiltration failure eventually. In the present study, we utilized human mesothelial MeT-5A cells for the in vitro experiments and a PD mouse model for in vivo validation to study the pathophysiological mechanisms underneath PD-associated peritoneal fibrosis.

View Article and Find Full Text PDF

For patients undergoing long-term peritoneal dialysis (PD), exposure to biologically incompatible PD solutions and the consequent peritoneal structure change can lead to progressive angiogenesis and fibrosis, and ultimately result in ultrafiltration failure (UFF). Peritoneal transport studies in aquaporin 1 (AQP1) knockout mice indicate that water transport across the peritoneum is mediated by AQP1, which accounts for up to 50% of ultrafiltration. Another recent study on a large cohort of PD patients with kidney failure further substantiated the impact of AQP1 genotype variation on water channel expression in the peritoneal membrane, influencing water transport, ultrafiltration, and patient prognosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!