The nanofiber materials of three-dimensional spatial structure synthesized by electrospun have the characteristics of high porosity, high specific surface area, and high similarity to the natural extracellular matrix (ECM) of the human body. These are beneficial for absorbing wound exudate, effectively blocking the invasion of external bacteria, and promoting cell respiration and proliferation, which provides an ideal microenvironment for wound healing. Moreover, electrospun nanofiber dressings can flexibly load drugs according to the condition of the wound, further promoting wound healing. Recently, electrospun nanofiber materials have shown promising application prospects as medical dressings in clinical. Based on current research, this article reviewed the development history of wound dressings and the principles of electrospun technology. Subsequently, based on the types of base material, polymer-based electrospun nanofiber dressing and electrospun nanofiber dressing containing drug-releasing factors were discussed. Furthermore, the application of electrospun nanofiber dressing on skin tissue is highlighted. This review aims to provide a detailed overview of the current research on electrospun nanomaterials for wound healing, addressing challenges and suggesting future research directions to advance the field of electrospun dressings in wound healing.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11435701 | PMC |
http://dx.doi.org/10.3390/polym16182596 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!