Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The influenza A virus poses a serious threat to human health and is an important global public health issue. The drugs currently used for treatment are becoming increasingly ineffective against influenza A viruses and require the development of new antiviral drugs. Angelica tenuissima Nakai (ATN), a traditional herbal medicine belonging to the Umbelliferae family, exhibits a broad range of pharmacological activities, including inflammation, headache, and cold symptoms. In the present study, based on target protein identification, functional enrichment analysis, and gene set comparisons, we first suggested that ATN has potential therapeutic effects against influenza A virus infection. Next, methylthiazol tetrazolium (MTT) and sulforhodamine B colorimetric (SRB) assay results revealed that ATN exhibited low cytotoxicity in Madin-Darby canine kidney (MDCK) cells. The antiviral properties of ATN were observed against H1N1 and H3N2 virus strains. Microscopy confirmed the increased survival rate of the host cells. Further time-of-addition experiments revealed that the addition of ATN before virus adsorption showed similar results to the whole period of treatment. The pre- and co-treated groups showed lower levels of viral RNA (M1 protein). The results of this study suggest that ATN exhibits antiviral properties against the influenza A virus. These therapeutic properties of ATN can serve as a theoretical basis for further research on the applicability of ATN in the development of antiviral agents.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11435179 | PMC |
http://dx.doi.org/10.3390/pathogens13090761 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!