A Novel Topology of a 3 × 3 Series Phased Array Antenna with Aperture-Coupled Feeding.

Sensors (Basel)

Department of Electrical and Computer Engineering, Southern Methodist University, Dallas, TX 75205, USA.

Published: September 2024

AI Article Synopsis

  • This paper introduces a new 3 × 3 phased array antenna designed for 4 GHz with a high gain of 13.2 dBi and the ability to steer the beam 30 degrees while maintaining low capacitance variation of 1.5 pF.
  • The antenna's design incorporates an aperture-coupled feeding mechanism that minimizes size and streamlines production, making it more affordable and compact.
  • Additionally, the paper highlights the integration of cost-effective phase shifters and power splitters that enhance power distribution and support precise beam steering, tackling typical issues faced in phased array systems like space limitations and high expenses.

Article Abstract

This paper presents a novel 3 × 3 phased array antenna optimized for 4 GHz operation, achieving a realized gain of 13.2 dBi and enabling 30-degree beam steering with a minimal capacitance variation of 1.5 pF. The design features a series aperture-coupled feeding mechanism that not only reduces the antenna's size but also simplifies the fabrication process, making the device both cost-effective and compact. Integrating cost-efficient quadrature-hybrid phase shifters and novel power splitters with cascaded quadrature hybrids ensures uniform power distribution and precise beam steering. The innovative use of these components addresses common challenges in phased array systems, such as space constraints, high costs, and complex power distribution.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11435439PMC
http://dx.doi.org/10.3390/s24186128DOI Listing

Publication Analysis

Top Keywords

phased array
12
array antenna
8
aperture-coupled feeding
8
beam steering
8
power distribution
8
novel topology
4
topology series
4
series phased
4
antenna aperture-coupled
4
feeding paper
4

Similar Publications

A silicon photonics optical phased array with a two-dimensional matrix of antennas is experimentally demonstrated in which the unitary antennas are optimized such that light can be emitted over a high fraction of the overall array surface. This design strategy can be used to obtain a low divergence emitted beam containing a significant fraction of the total emitted power, at the expense of a reduced beam steering range. This type of device can be suited to phase front correction in optical wireless communications systems.

View Article and Find Full Text PDF

Terahertz reconfigurable intelligent surfaces (RIS) stand out from conventional phased arrays thanks to their unique electromagnetic properties and intelligent interconnect paradigms. They are a vital technology for terahertz wireless communication and radar detection systems. Compared with 1-bit coding metasurfaces, 2-bit coding metasurfaces offer significant advantages such as single beam steering and reduced quantization errors.

View Article and Find Full Text PDF

For the application scenario of multi-user, high-bandwidth laser communication in satellite internet, this paper proposes a spatiotemporal vector optimization algorithm to achieve high energy utilization in arbitrary multi-beam generation using a liquid crystal optical phased array antenna. The core components of this method involve optimizing phase offsets and power coefficients through iterative processes to achieve precise beam shaping and efficient energy distribution among multiple beams. This approach overcomes the single-link limitation of traditional laser terminals and resolves challenges such as low radiation efficiency and substantial power loss in multi-beam generation systems utilizing passive phased array antennas.

View Article and Find Full Text PDF

Single soliton microcomb combined with optical phased array for parallel FMCW LiDAR.

Nat Commun

January 2025

State Key Laboratory for Extreme Photonics and Instrumentation, International Research Center for Advanced Photonics, Ningbo Innovation Center, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310058, China.

The frequency-modulated continuous-wave (FMCW) technology combined with optical phased array (OPA) is promising for the all-solid-state light detection and ranging (LiDAR). We propose and experimentally demonstrate a silicon integrated OPA combined with an optical frequency microcomb for parallel LiDAR system. For realizing the parallel wavelengths emission consistent with Rayleigh criterion, the wide waveguide beyond single mode region combined with the bound state in the continuum (BIC) effect is harnessed to obtain an ultra-long optical grating antenna array.

View Article and Find Full Text PDF

Carbon fiber reinforced plastics inevitably develop defects such as delamination, inclusions, and impacts during manufacturing and usage, which can adversely affect their performance. Ultrasonic phased array inspection is the most effective method for conducting nondestructive testing to ensure their quality. However, the diversity of defects within carbon fiber reinforced plastics makes it challenging for the current ultrasonic phased array inspection techniques to accurately identify these defects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!