A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Contrastive Learning-Based Personalized Tag Recommendation. | LitMetric

Personalized tag recommendation algorithms generate personalized tag lists for users by learning the tagging preferences of users. Traditional personalized tag recommendation systems are limited by the problem of data sparsity, making the personalized tag recommendation models unable to accurately learn the embeddings of users, items, and tags. To address this issue, we propose a contrastive learning-based personalized tag recommendation algorithm, namely CLPTR. Specifically, CLPTR generates augmented views of user-tag and item-tag interaction graphs by injecting noises into implicit feature representations rather than dropping nodes and edges. Hence, CLPTR is able to greatly preserve the underlying semantics of the original user-tag or the item-tag interaction graphs and avoid destroying their structural information. In addition, we integrate the contrastive learning module into a graph neural network-based personalized tag recommendation model, which enables the model to extract self-supervised signals from user-tag and item-tag interaction graphs. We conduct extensive experiments on real-world datasets, and the experimental results demonstrate the state-of-the-art performance of our proposed CLPTR compared with traditional personalized tag recommendation models.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11436186PMC
http://dx.doi.org/10.3390/s24186061DOI Listing

Publication Analysis

Top Keywords

personalized tag
32
tag recommendation
28
user-tag item-tag
12
item-tag interaction
12
interaction graphs
12
contrastive learning-based
8
personalized
8
learning-based personalized
8
tag
8
traditional personalized
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!