Magnetoencephalography (MEG) systems are advanced neuroimaging tools used to measure the magnetic fields produced by neuronal activity in the human brain. However, they require significant amounts of liquid helium to keep the superconducting quantum interference device (SQUID) sensors in a stable superconducting state. Additionally, MEG systems must be installed in a magnetically shielded room to minimize interference from external magnetic fields. We have developed an advanced MEG system that incorporates a superconducting magnetic shield and a zero-boil-off system. This system overcomes the typical limitations of traditional MEG systems, such as the frequent need for liquid helium refills and the spatial constraints imposed by magnetically shielded rooms. To validate the system, we conducted an evaluation using signal source estimation. This involved a phantom with 50 current sources of known location and magnitude under active zero-boil-off conditions. Our evaluations focused on the precision of the magnetic field distribution and the quantification of estimation errors. We achieved a consistent magnetic field distribution that matched the source current, maintaining an estimation error margin within 3.5 mm, regardless of the frequency of the signal source current. These findings affirm the practicality and efficacy of the system.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11435837 | PMC |
http://dx.doi.org/10.3390/s24186044 | DOI Listing |
Neuroimage
January 2025
School of Instrumentation Science and Optoelectronic Engineering, Beihang University, Beijing, 100191, China; Key Laboratory of Ultra-Weak Magnetic Field Measurement Technology, Ministry of Education, School of Instrumentation and Optoelectronic Engineering, Beihang University, 100191, Beijing, China; National Innovation Platform for industry-Education Integration in Medicine-Engineering Interdisciplinary, Shandong Key Laboratory for Magnetic Field-free Medicine and Functional Imaging, Shandong University, Research Institute of Shandong University, Jinan, 250014, China; National Institute of Extremely-Weak Magnetic Field Infrastructure, Hangzhou, 310051, China; State Key Laboratory of Traditional Chinese Medicine Syndrome/Health Construction Center, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China; Hefei National Laboratory, Hefei, 230088, China. Electronic address:
The optically pumped magnetometer (OPM) based magnetoencephalography (MEG) system offers advantages such as flexible layout and wearability. However, the position instability or jitter of OPM sensors can result in bad channels and segments, which significantly impede subsequent preprocessing and analysis. Most common methods directly reject or interpolate to repair these bad channels and segments.
View Article and Find Full Text PDFMicroorganisms
November 2024
Department of Biology, University Federico II, 80126 Naples, Italy.
is a Gram-negative bacterium that thrives in extreme acidic conditions. It has emerged as a key player in biomining and bioleaching technologies thanks to its unique ability to mobilize a wide spectrum of elements, such as Li, P, V, Cr, Fe, Ni, Cu, Zn, Ga, As, Mo, W, Pb, U, and its role in ferrous iron oxidation and reduction. catalyzes the extraction of elements by generating iron (III) ions in oxic conditions, which are able to react with metal sulfides.
View Article and Find Full Text PDFHum Brain Mapp
January 2025
Montreal Neurological Institute, McGill University, Montréal, Quebec, Canada.
Perception and production of music and speech rely on auditory-motor coupling, a mechanism which has been linked to temporally precise oscillatory coupling between auditory and motor regions of the human brain, particularly in the beta frequency band. Recently, brain imaging studies using magnetoencephalography (MEG) have also shown that accurate auditory temporal predictions specifically depend on phase coherence between auditory and motor cortical regions. However, it is not yet clear whether this tight oscillatory phase coupling is an intrinsic feature of the auditory-motor loop, or whether it is only elicited by task demands.
View Article and Find Full Text PDFNeuroimage
January 2025
Key Laboratory of Ultra-Weak Magnetic Field Measurement Technology, Ministry of Education, School of Instrumentation and Optoelectronic Engineering, Beihang University, 100191, Beijing, China; Hangzhou Institute of Extremely-Weak Magnetic Field Major National Science and Technology Infrastructure, Hangzhou, 310051, China; State Key Laboratory of Traditional Chinese Medicine Syndrome/Health Construction Center, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China; Hefei National Laboratory, Hefei, 230088, China. Electronic address:
Sci Rep
January 2025
Department of Electronic Engineering, Hanyang University, Seoul, 04763, South Korea.
This paper presents novel MIMO microstrip patch antennas with dimensions of 40 × 80 × 1.6 mm³ incorporating a decoupling and pattern correction structure (DPCS) designed to mitigate mutual coupling and radiation pattern distortion, operating within 3.6-3.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!