AnyFace++: Deep Multi-Task, Multi-Domain Learning for Efficient Face AI.

Sensors (Basel)

Institute of Smart Systems and Artificial Intelligence, Nazarbayev University, Astana 010000, Kazakhstan.

Published: September 2024

Accurate face detection and subsequent localization of facial landmarks are mandatory steps in many computer vision applications, such as emotion recognition, age estimation, and gender identification. Thanks to advancements in deep learning, numerous facial applications have been developed for human faces. However, most have to employ multiple models to accomplish several tasks simultaneously. As a result, they require more memory usage and increased inference time. Also, less attention is paid to other domains, such as animals and cartoon characters. To address these challenges, we propose an input-agnostic face model, AnyFace++, to perform multiple face-related tasks concurrently. The tasks are face detection and prediction of facial landmarks for human, animal, and cartoon faces, including age estimation, gender classification, and emotion recognition for human faces. We trained the model using deep multi-task, multi-domain learning with a heterogeneous cost function. The experimental results demonstrate that AnyFace++ generates outcomes comparable to cutting-edge models designed for specific domains.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11436022PMC
http://dx.doi.org/10.3390/s24185993DOI Listing

Publication Analysis

Top Keywords

deep multi-task
8
multi-task multi-domain
8
multi-domain learning
8
face detection
8
facial landmarks
8
emotion recognition
8
age estimation
8
estimation gender
8
human faces
8
anyface++ deep
4

Similar Publications

Development and external validation of a multi-task feature fusion network for CTV segmentation in cervical cancer radiotherapy.

Radiother Oncol

December 2024

Department of Digital Medicine, School of Biomedical Engineering and Medical Imaging, Army Medical University, Chongqing 400038, China. Electronic address:

Background And Purpose: Accurate segmentation of the clinical target volume (CTV) is essential to deliver an effective radiation dose to tumor tissues in cervical cancer radiotherapy. Also, although automated CTV segmentation can reduce oncologists' workload, challenges persist due to the microscopic spread of tumor cells undetectable in CT imaging, low-intensity contrast between organs, and inter-observer variability. This study aims to develop and validate a multi-task feature fusion network (MTF-Net) that uses distance-based information to enhance CTV segmentation accuracy.

View Article and Find Full Text PDF

Objective: Early detection of surgical complications allows for timely therapy and proactive risk mitigation. Machine learning (ML) can be leveraged to identify and predict patient risks for postoperative complications. We developed and validated the effectiveness of predicting postoperative complications using a novel surgical Variational Autoencoder (surgVAE) that uncovers intrinsic patterns via cross-task and cross-cohort presentation learning.

View Article and Find Full Text PDF

Assessment of skeletal maturity is a common clinical practice to investigate adolescent growth and endocrine disorders. The distal radius and ulna (DRU) maturity classification is a practical and easy-to-use scheme that was designed for adolescent idiopathic scoliosis clinical management and presents high sensitivity in predicting the growth peak and cessation among adolescents. However, time-consuming and error-prone manual assessment limits DRU in clinical application.

View Article and Find Full Text PDF

Multivariate clinical time series data, such as those contained in Electronic Health Records (EHR), often exhibit high levels of irregularity, notably, many missing values and varying time intervals. Existing methods usually construct deep neural network architectures that combine recurrent neural networks and time decay mechanisms to model variable correlations, impute missing values, and capture the impact of varying time intervals. The complete data matrices thus obtained from the imputation task are used for downstream risk prediction tasks.

View Article and Find Full Text PDF

Concordance-based Predictive Uncertainty (CPU)-Index: Proof-of-concept with application towards improved specificity of lung cancers on low dose screening CT.

Artif Intell Med

December 2024

Department of Electrical and Computer Engineering, Duke University, Durham, NC, United States of America; Medical Physics Graduate Program, Duke University, Durham, NC, United States of America; Department of Radiology, Duke University, Durham, NC, United States of America; Department of Biomedical Engineering, Duke University, Durham, NC, United States of America; Department of Radiation Oncology, Duke University, Durham, NC, United States of America; Department of Pathology, Duke University, Durham, NC, United States of America. Electronic address:

In this paper, we introduce a novel concordance-based predictive uncertainty (CPU)-Index, which integrates insights from subgroup analysis and personalized AI time-to-event models. Through its application in refining lung cancer screening (LCS) predictions generated by an individualized AI time-to-event model trained with fused data of low dose CT (LDCT) radiomics with patient demographics, we demonstrate its effectiveness, resulting in improved risk assessment compared to the Lung CT Screening Reporting & Data System (Lung-RADS). Subgroup-based Lung-RADS faces challenges in representing individual variations and relies on a limited set of predefined characteristics, resulting in variable predictions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!