AI Article Synopsis

  • The Internet of Things (IoT) has gained traction in industrial settings, requiring low latency and high reliability, prompting the development of the IEEE 802.15.4e standard with a new MAC protocol called Time Slotted Channel Hopping (TSCH).
  • This paper presents a new optimization algorithm, QoS-aware Multi-objective enhanced Differential Evolution optimization (QMDE), aimed at effectively managing Quality of Service (QoS) metrics like delay and packet loss in heterogeneous networks.
  • Through simulations using TSCH-SIM and Matlab, the study demonstrates that QMDE outperforms existing scheduling methods, significantly improving Packet Delivery Ratio (PDR) and delay in various sensor network scenarios for industrial applications.

Article Abstract

The emergence of the Internet of Things (IoT) has attracted significant attention in industrial environments. These applications necessitate meeting stringent latency and reliability standards. To address this, the IEEE 802.15.4e standard introduces a novel Medium Access Control (MAC) protocol called Time Slotted Channel Hopping (TSCH). Designing a centralized scheduling system that simultaneously achieves the required Quality of Service (QoS) is challenging due to the multi-objective optimization nature of the problem. This paper introduces a novel optimization algorithm, QoS-aware Multi-objective enhanced Differential Evolution optimization (QMDE), designed to handle the QoS metrics, such as delay and packet loss, across multiple services in heterogeneous networks while also achieving the anticipated service throughput. Through co-simulation between TSCH-SIM and Matlab, R2023a we conducted multiple simulations across diverse sensor network topologies and industrial QoS scenarios. The evaluation results illustrate that an optimal schedule generated by QMDE can effectively fulfill the QoS requirements of closed-loop supervisory control and condition monitoring industrial services in sensor networks from 16 to 100 nodes. Through extensive simulations and comparative evaluations against the Traffic-Aware Scheduling Algorithm (TASA), this study reveals the superior performance of QMDE, achieving significant enhancements in both Packet Delivery Ratio (PDR) and delay metrics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11436205PMC
http://dx.doi.org/10.3390/s24185987DOI Listing

Publication Analysis

Top Keywords

multi-objective enhanced
8
enhanced differential
8
differential evolution
8
evolution optimization
8
time slotted
8
slotted channel
8
channel hopping
8
internet things
8
sensor networks
8
introduces novel
8

Similar Publications

Process-based screening of porous materials for vacuum swing adsorption based on 1D classical density functional theory and PC-SAFT.

Mol Syst Des Eng

January 2025

Energy & Process Systems Engineering, Department of Mechanical and Process Engineering, ETH Zurich Zurich Switzerland

Adsorption-based processes are showing substantial potential for carbon capture. Due to the vast space of potential solid adsorbents and their influence on the process performance, the choice of the material is not trivial but requires systematic approaches. In particular, the material choice should be based on the performance of the resulting process.

View Article and Find Full Text PDF

Automated large-scale farmland preparation operations face significant challenges related to path planning efficiency and uniformity in resource allocation. To improve agricultural production efficiency and reduce operational costs, an enhanced method for planning land preparation paths is proposed. In the initial stage, unmanned aerial vehicles (UAVs) are employed to collect data from the field, which is then used to construct accurate farm models.

View Article and Find Full Text PDF

Water inrush in roadways frequently occurs in coal mines when the rock mass is enriched with underground water. To avoid underground water flow into the roadway and guarantee the stability of the roadway, grouting and cables are commonly used to prevent water inrush and guarantee the stability of the roadway. In this work, FLAC3D (fast lagrangian analysis of continua 3 dimension) numerical simulation software was used, and the fluid‒mechanical coupling effects were considered.

View Article and Find Full Text PDF

As the global energy landscape shifts and sustainability becomes crucial, the offshore oil and gas sector confronts significant challenges and opportunities. This paper addresses the issues of energy efficiency and environmental impact of optimizing offshore micro-energy systems (OMIES) by proposing a multi-objective optimization model that integrates chaotic local search and particle swarm optimization (PSO). The model aims to achieve optimal scheduling of the energy system by comprehensively considering operational costs, carbon emissions, energy utilization efficiency, and energy fluctuation risks.

View Article and Find Full Text PDF

Developing autonomous navigation techniques for surface vehicles remains an important research area, and accurate global path planning is essential. For mobile robots-particularly for Unmanned Surface Vehicles (USVs)-a key challenge is ensuring that sharp turns and sharp breaks are avoided. Therefore, global path planning must not only calculate the shortest path but also provide smoothness.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!