Fingerprint-based indoor localization has been a hot research topic. However, the current fingerprint-based indoor localization approaches still rely on a single fingerprint database, where the average level of data at reference points is used as the fingerprint representation. In variable environmental conditions, the variations in signals caused by changes in the environmental states introduce significant deviations between the average level and the actual fingerprint characteristics. This deviation leads to a mismatch between the constructed fingerprint database and the real-world conditions, thereby affecting the effectiveness of fingerprint matching. Meanwhile, the sharp noise interference caused by uncertainties such as personnel movement has a significant interference on the creation of the fingerprint database and fingerprint matching in online stage. Examination of the sampling data after denoising with Robust Principal Component Analysis (RPCA) revealed distinct multi-fingerprint characteristics with clear boundaries at certain access points. Based on these observations, the concept of constructing a fingerprint database using multiple fingerprints is introduced and its feasibility is explored. Additionally, a multi-fingerprint solution based on naive Bayes classification is proposed to accurately represent fingerprint characteristics under different environmental conditions. This method is based on the online stage fingerprints. The corresponding state space is selected using the naive Bayes classifier, enabling the selection of an appropriate fingerprint database for matching. Through simulations and empirical evaluations, the proposed multi-fingerprints construction scheme consistently outperforms the traditional single-fingerprint database in terms of positioning accuracy across all tested localization algorithms.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11435748PMC
http://dx.doi.org/10.3390/s24185940DOI Listing

Publication Analysis

Top Keywords

fingerprint database
20
indoor localization
12
fingerprint
10
fingerprint-based indoor
8
average level
8
environmental conditions
8
fingerprint characteristics
8
fingerprint matching
8
online stage
8
naive bayes
8

Similar Publications

Background: The prohibitive costs of drug development for Alzheimer's Disease (AD) emphasize the need for alternative in silico drug repositioning strategies. Graph learning algorithms, capable of learning intrinsic features from complex network structures, can leverage existing databases of biological interactions to improve predictions in drug efficacy. We developed a novel machine learning framework, the PreSiBOGNN, that integrates muti-modal information to predict cognitive improvement at the subject level for precision medicine in AD.

View Article and Find Full Text PDF

Anticounterfeiting technologies meet challenges in the Internet of Things era due to the rapidly growing volume of objects, their frequent connection with humans, and the accelerated advance of counterfeiting/cracking techniques. Here, we, inspired by biological fingerprints, present a simple anticounterfeiting system based on perovskite quantum dot (PQD) fingerprint physical unclonable function (FPUF) by cooperatively utilizing the spontaneous-phase separation of polymers and selective in situ synthesis PQDs as an entropy source. The FPUFs offer red, green, and blue full-color fingerprint identifiers and random three-dimensional (3D) morphology, which extends binary to multivalued encoding by tuning the perovskite and polymer components, enabling a high encoding capacity (about 10, far surpassing that of biometric fingerprints).

View Article and Find Full Text PDF

This study illustrates the use of chemical fingerprints with machine learning for blood-brain barrier (BBB) permeability prediction. Employing the Blood Brain Barrier Database (B3DB) dataset for BBB permeability prediction, we extracted nine different fingerprints. Support Vector Machine (SVM) and Extreme Gradient Boosting (XGBoost) algorithms were used to develop models for permeability prediction.

View Article and Find Full Text PDF

Background/objectives: Short tandem repeat (STR) loci are widely used in forensic genetics for identification and kinship analysis. Traditionally, these loci were selected to avoid medical associations, but recent studies suggest that loci such as TH01 and D16S539 may be linked to psychiatric conditions like schizophrenia. This study explores these potential associations and considers the privacy implications related to disease susceptibility.

View Article and Find Full Text PDF

NeuTox 2.0: A hybrid deep learning architecture for screening potential neurotoxicity of chemicals based on multimodal feature fusion.

Environ Int

December 2024

Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China.

Chemically induced neurotoxicity is a critical aspect of chemical safety assessment. Traditional and costly experimental methods call for the development of high-throughput virtual screening. However, the small datasets of neurotoxicity have limited the application of advanced deep learning techniques.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!