AI Article Synopsis

  • Understanding the relationship between vectors (like mosquitoes) and animal reservoirs (including birds and crocodilians) is crucial in the context of emerging zoonotic diseases like West Nile Virus (WNV), which is primarily transmitted to humans through these vectors.
  • Recent findings indicate that crocodilians can also serve as competent hosts for WNV, raising concerns about their role in the virus's transmission to mosquitoes.
  • Climate change is projected to alter the distribution of both mosquito and crocodilian species in North America, increasing the risk of WNV outbreaks, particularly for people living near crocodilian habitats.

Article Abstract

In an age of emerging zoonoses, it is important to understand the intricate system of vectors and reservoirs, or hosts, and their relation to humans. West Nile Virus (WNV) has been detected in a myriad of nonhuman hosts. Transmission of the virus to humans is reliant on amplified seroprevalence within the host, which occurs primarily in birds. However, recent studies have found that other animal groups, including crocodilians, can obtain seroprevalence amplification to levels that make them competent hosts able to transmit WNV to mosquitoes, which can then transmit to humans. Climate change could exacerbate this transmission risk by shifting the distributions of mosquito vectors towards novel geographic ranges. Here, we use maximum entropy models to map the current and future distributions of three mosquito vector species and four crocodilian species in North America to determine the emerging risk of WNV outbreaks associated with changing climates and WNV associated with crocodilians in North America. From our models, we determined that one mosquito species in particular, , will increase its distribution across the ranges of all crocodilian species in all tested climate change scenarios. This poses a potential risk to public health for people visiting and living near crocodilian farms and high-density natural crocodilian populations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11433929PMC
http://dx.doi.org/10.3390/microorganisms12091898DOI Listing

Publication Analysis

Top Keywords

west nile
8
nile virus
8
changing climates
8
climate change
8
crocodilian species
8
north america
8
alligator mosquito
4
mosquito north
4
north american
4
american crocodilians
4

Similar Publications

A single-cell atlas of the Culex tarsalis midgut during West Nile virus infection.

PLoS Pathog

January 2025

Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA.

The mosquito midgut functions as a key interface between pathogen and vector. However, studies of midgut physiology and virus infection dynamics are scarce, and in Culex tarsalis-an extremely efficient vector of West Nile virus (WNV)-nonexistent. We performed single-cell RNA sequencing on Cx.

View Article and Find Full Text PDF

Orthoflaviviruses are emerging arthropod-borne pathogens whose replication cycle is tightly linked to host lipid metabolism. Previous lipidomic studies demonstrated that infection with the closely related hepatitis C virus (HCV) changes the fatty acid (FA) profile of several lipid classes. Lipids in HCV-infected cells had more very long-chain and desaturated FAs and viral replication relied on functional FA elongation and desaturation.

View Article and Find Full Text PDF

A Comprehensive Review of the Development and Therapeutic Use of Antivirals in Flavivirus Infection.

Viruses

January 2025

Department of Microbiology and Immunology, Miller School of Medicine, University of Miami/UHealth, Miami, FL 33136, USA.

Flaviviruses are a diverse group of viruses primarily transmitted through hematophagous insects like mosquitoes and ticks. Significant expansion in the geographic range, prevalence, and vectors of flavivirus over the last 50 years has led to a dramatic increase in infections that can manifest as hemorrhagic fever or encephalitis, leading to prolonged morbidity and mortality. Millions of infections every year pose a serious threat to worldwide public health, encouraging scientists to develop a better understanding of the pathophysiology and immune evasion mechanisms of these viruses for vaccine development and antiviral therapy.

View Article and Find Full Text PDF

Dengue fever, caused by the dengue virus (DENV), poses a significant global health challenge, particularly in tropical and subtropical regions. Recent increases in indigenous DENV cases in Europe are concerning, reflecting rising incidence linked to climate change and the spread of mosquitoes. These vectors thrive under environmental conditions like temperature and humidity, which are increasingly influenced by climate change.

View Article and Find Full Text PDF

Identifying Allosteric Small-Molecule Binding Sites of Inactive NS2B-NS3 Proteases of Pathogenic .

Viruses

December 2024

Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, La Jolla, San Diego, CA 92093-0657, USA.

Dengue, West Nile, Zika, Yellow fever, and Japanese encephalitis viruses persist as significant global health threats. The development of new therapeutic strategies based on inhibiting essential viral enzymes or viral-host protein interactions is problematic due to the fast mutation rate and rapid emergence of drug resistance. This study focuses on the NS2B-NS3 protease as a promising target for antiviral drug development.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!