In utero colonization or deposition of beneficial microorganisms and their by-products likely occurs through various mechanisms, such as hematogenous spread or ascension from the reproductive tract. With high-throughput sequencing techniques, the identification of microbial components in first-pass neonatal meconium has been achieved. While these components are low-biomass and often not abundant enough to culture, the presence of microbial DNA signatures may promote fetal immune tolerance or epigenetic regulation prior to birth. The aim of this study was to investigate the maternal source of the neonatal first-pass meconium microbiome. Maternal vaginal and anal samples collected from twenty-one maternal-infant dyad pairs were compared via principal component analysis to first-pass neonatal meconium microbial compositions. Results demonstrated the greatest degree of similarity between the maternal gut microbiome in the second and third trimesters and vaginal microbiome samples across pregnancy, suggesting that the maternal gut microbiota may translocate to the fetal gut during pregnancy. This study sheds light on the origin and timing of the potential transfer of maternal microbial species to offspring in utero.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11434507 | PMC |
http://dx.doi.org/10.3390/microorganisms12091865 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!