: Near-infrared photoimmunotherapy (NIR-PIT) was recently approved for the treatment of unresectable locally advanced or recurrent head and neck cancers in Japan; however, only one clinical dose has been validated in clinical trials, potentially resulting in excessive or insufficient dosing. Moreover, IRDye700X (IR700) fluorescence intensity plateaus during treatment, indicating a particular threshold for the antitumor effects. Therefore, we investigated the NIR laser dose across varying tumor sizes and irradiation methods until the antitumor effects of the fluorescence decay rate plateaued. : Mice were subcutaneously transplanted with A431 xenografts and categorized into control, clinical dose (cylindrical irradiation at 100 J/cm², frontal irradiation at 50 J/cm²), and evaluation groups. The rate of tumor IR700 fluorescence intensity decay to reach predefined rates (-0.05%/s or -0.2%/s) until the cessation of light irradiation was calculated using a real-time fluorescence imaging system. : The evaluation group exhibited antitumor effects comparable to those of the clinical dose group at a low irradiation dose. Similar results were observed across tumor sizes and irradiation methods. : In conclusion, the optimal antitumor effect of NIR-PIT is achieved when the fluorescence decay rate reaches a plateau, indicating the potential to determine the appropriate dose for PIT using a real-time fluorescence monitoring system.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11435081PMC
http://dx.doi.org/10.3390/ph17091246DOI Listing

Publication Analysis

Top Keywords

real-time fluorescence
12
clinical dose
12
antitumor effects
12
fluorescence monitoring
8
monitoring system
8
ir700 fluorescence
8
fluorescence intensity
8
tumor sizes
8
sizes irradiation
8
irradiation methods
8

Similar Publications

Analysis of Drug Molecules in Living Cells.

Crit Rev Anal Chem

January 2025

Department of Bioengineering, Faculty of Engineering, The University of Edinburgh, Edinburgh, UK.

Cells are the fundamental units of life, comprising a highly concentrated and complex assembly of biomolecules that interact dynamic ally across spatial and temporal scales. Living cells are constantly undergoing dynamic processes, therefore, to understand the interactions between drug molecules and living cells is of paramount importance in the biomedical sciences and pharmaceutical development. Compared with traditional end-point assays and fixed cell analysis, analysis of drug molecules in living cells can provide more insight into the effects of drugs on cells in real-time and allowing for a better understanding of drug mechanisms and effects, which will contribute to the development of drug developing and testing and personalize medicine.

View Article and Find Full Text PDF

To establish a rapid and sensitive detection method for the porcine reproductive and respiratory syndrome virus (PRRSV), gene-specific primers and a TaqMan probe were designed based on the gene of PRRSV, and a new stable fully pre-mixed reverse transcription real-time fluorescence quantitative PCR (RT-qPCR) reaction mixture was developed. A simple and rapid RT-qPCR detection method for PRRSV was developed by optimizing nucleic acid amplification conditions. The results showed that the method was able to specifically detect PRRSV without cross-reactivity with the other 11 porcine susceptible viruses.

View Article and Find Full Text PDF

Plastic pollution, particularly from microplastics (MPs) and nanoplastics (NPs), has become a critical environmental and health concern due to their widespread distribution, persistence, and potential toxicity. MPs and NPs originate from primary sources, such as cosmetic microspheres or synthetic fibers, and secondary fragmentation of larger plastics through environmental degradation. These particles, typically less than 5 mm, are found globally, from deep seabeds to human tissues, and are known to adsorb and release harmful pollutants, exacerbating ecological and health risks.

View Article and Find Full Text PDF

Glucose Sensor Design Based on Monte Carlo Simulation.

Biosensors (Basel)

January 2025

Faculty of Civil Engineering and Mechanics, Kunming University of Science and Technology, Kunming 650500, China.

Continuous glucose monitoring based on the minimally invasive implantation of glucose sensor is characterized by high accuracy and good stability. At present, glucose concentration monitoring based on fluorescent glucose capsule sensor is a new development trend. In this paper, we design a fluorescent glucose capsule sensor with a design optimization study.

View Article and Find Full Text PDF

Spheroids, as three-dimensional (3D) cell aggregates, can be prepared using various methods, including hanging drops, microwells, microfluidics, magnetic manipulation, and bioreactors. However, current spheroid manufacturing techniques face challenges such as complex workflows, the need for specialized personnel, and poor batch reproducibility. In this study, we designed a support-free, 3D-printed microwell chip and developed a compatible low-cell-adhesion process.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!