Degenerative scoliosis (DS), encompassing conditions like spondylolisthesis and spinal stenosis, is a common type of spinal deformity. Lumbar interbody fusion (LIF) stands as a conventional surgical intervention for this ailment, aiming at decompression, restoration of intervertebral height, and stabilization of motion segments. Despite its widespread use, the precise mechanism underlying spinal fusion remains elusive. In this review, our focus lies on endochondral ossification for spinal fusion, a process involving vertebral development and bone healing. Endochondral ossification is the key step for the successful vertebral fusion. Endochondral ossification can persist in hypoxic conditions and promote the parallel development of angiogenesis and osteogenesis, which corresponds to the fusion process of new bone formation in the hypoxic region between the vertebrae. The ideal material for interbody fusion cages should have the following characteristics: (1) Good biocompatibility; (2) Stable chemical properties; (3) Biomechanical properties similar to bone tissue; (4) Promotion of bone fusion; (5) Favorable for imaging observation; (6) Biodegradability. Utilizing cartilage-derived bone-like constructs holds promise in promoting bony fusion post-operation, thus warranting exploration in the context of spinal fusion procedures.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11433020 | PMC |
http://dx.doi.org/10.3390/jpm14090957 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!