A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Using Association Rules to Obtain Sets of Prevalent Symptoms throughout the COVID-19 Pandemic: An Analysis of Similarities between Cases of COVID-19 and Unspecified SARS in São Paulo-Brazil. | LitMetric

The efficient recognition of symptoms in viral infections holds promise for swift and precise diagnosis, thus mitigating health implications and the potential recurrence of infections. COVID-19 presents unique challenges due to various factors influencing diagnosis, especially regarding disease symptoms that closely resemble those of other viral diseases, including other strains of SARS, thus impacting the identification of useful and meaningful symptom patterns as they emerge in infections. Therefore, this study proposes an association rule mining approach, utilising the Apriori algorithm to analyse the similarities between individuals with confirmed SARS-CoV-2 diagnosis and those with unspecified SARS diagnosis. The objective is to investigate, through symptom rules, the presence of COVID-19 patterns among individuals initially not diagnosed with the disease. Experiments were conducted using cases from Brazilian SARS datasets for São Paulo State. Initially, reporting percentage similarities of symptoms in both groups were analysed. Subsequently, the top ten rules from each group were compared. Finally, a search for the top five most frequently occurring positive rules among the unspecified ones, and vice versa, was conducted to identify identical rules, with a particular focus on the presence of positive rules among the rules of individuals initially diagnosed with unspecified SARS.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11430988PMC
http://dx.doi.org/10.3390/ijerph21091164DOI Listing

Publication Analysis

Top Keywords

unspecified sars
12
individuals initially
8
initially diagnosed
8
positive rules
8
rules
6
sars
5
association rules
4
rules sets
4
sets prevalent
4
symptoms
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!