Analysis of Vibration Characteristics of Spatial Non-Uniform Tensioned Thin-Film Structures Based on the Absolute Nodal Coordinate Formulation.

Micromachines (Basel)

State Key Laboratory of Electromechanical Integrated Manufacturing of High-Performance Electronic Equipments, Xidian University, No. 2 South Taibai Road, Xi'an 710071, China.

Published: September 2024

AI Article Synopsis

  • Spatial thin-film structures can vibrate significantly more than their thickness when under load, which limits their performance.
  • The study focuses on the vibration of tensioned membrane structures with non-uniform elements, using a formula called the Absolute Nodal Coordinate Formulation (ANCF) to include how these films wrinkle when under tension.
  • The results show how different placements and sizes of non-uniform elements affect vibrations and were validated through experiments, laying the groundwork for future vibration control in thin films.

Article Abstract

Due to their lightweight characteristics, spatial thin-film structures can generate vibrations far exceeding their film thickness when subjected to external loads, which has become a key factor limiting their performance. This study examines the vibration characteristics of tensioned membrane structures with non-uniform elements subjected to impacts in air, leveraging the Absolute Nodal Coordinate Formulation (ANCF). This model takes into account the wrinkling deformation of thin films under pre-tension and incorporates it into the dynamic equation derived using the absolute node coordinate method. A detailed discussion was conducted on the influence of non-uniform elements, situated at different locations and side lengths, on the vibration characteristics of the thin film. The analytical results obtained from the vibration model were compared with the experimental results, validating the effectiveness of the vibration model. This provides a theoretical foundation for the subsequent vibration control of thin films.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11433922PMC
http://dx.doi.org/10.3390/mi15091147DOI Listing

Publication Analysis

Top Keywords

vibration characteristics
12
characteristics spatial
8
thin-film structures
8
absolute nodal
8
nodal coordinate
8
coordinate formulation
8
non-uniform elements
8
thin films
8
vibration model
8
vibration
5

Similar Publications

In this study, the AlFeO@n-Pr@Et-SOH heterogeneous catalyst was successfully synthesized and utilized to produce biodiesel from oleic acid through an esterification process and to oxidize sulfides. To examine the physicochemical characteristics of the AlFeO@n-Pr@Et-SOH nanomaterial, a variety of advanced techniques were employed, including Fourier Transform infrared spectroscopy (FT-IR), Field emission scanning electron microscopy (FE-SEM), Energy dispersive X-ray spectroscopy (EDX), Vibrating sample magnetometer (VSM), Elemental Mapping, Transmission electron microscopy (TEM), Inductively coupled plasma (ICP), and X-ray diffraction (XRD). The AlFeO@n-Pr@Et-SOH materials demonstrated excellent performance in both the esterification of oleic acid and the oxidation of sulfides.

View Article and Find Full Text PDF

Raman signatures of inversion symmetry breaking structural transition in quasi-1D compound, (TaSe4)3I.

J Phys Condens Matter

January 2025

School of Physical Sciences, Indian Association for the Cultivation of Science, 2A & B Raja S C Mullick Road, Kolkata 700032, INDIA, Kolkata, 700032, INDIA.

The breaking of inversion symmetry combined with spin-orbit coupling, can give rise to intrigu- ing quantum phases and collective excitations. Here, we report systematic temperature dependent Raman scattering and theoretical calculations of phonon modes across the inversion symmetry- breaking structural transitions in a quasi-one-dimensional compound (TaSe4)3I. Our investigation revealed the emergence of three additional Raman-active modes in Raman spectra of the low- temperature (LT) non-centrosymmetric (NC) structure of the material.

View Article and Find Full Text PDF

Parallel layered scheme-based integrated orbit-attitude-vibration coupled dynamics and control for large-scale spacecraft.

ISA Trans

December 2024

National Key Laboratory of Aerospace Flight Dynamics, School of Astronautics, Northwestern Polytechnical University, Xi'an 710072, China; Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518057, China. Electronic address:

This paper investigates an integrated model-control scheme for large-scale spacecraft, focusing on orbit-attitude-vibration dynamics subject to strong time-varying coupling characteristics. The proposed scheme aims to achieve cooperative modeling and control for orbit maintenance, attitude stabilization and vibration suppression simultaneously. An integrated dynamic model is established using the Absolute Nodal Coordinate Formulation and Lagrangian mechanics, where time-varying coupling terms are preserved to enhance model integrity, contrasting with the reduction and decoupling methods commonly adopted in existing literature.

View Article and Find Full Text PDF

The present investigation seeks to customize the optical, magnetic, and structural characteristics of nickel oxide (NiO) nanopowders through chromium, iron, cobalt, copper, and zinc doping to enhance optoelectronic applications. In this regard, the preparation of pristine NiO and Ni × O (X = Cr, Fe, Co, Cu, and Zn) powders was successfully achieved through the co-precipitation method. The X-ray powder diffraction was employed to examine the prepared powders' phase formation and crystal structure characteristics.

View Article and Find Full Text PDF

Rail corrugation intensifies wheel-rail vibrations, often leading to damage in vehicle-track system components within affected sections. This paper proposes a novel method for identifying rail corrugation, which combines Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN), permutation entropy (PE), and Smoothed Pseudo Wigner-Ville Distribution (SPWVD). Initially, vertical acceleration data from the axle box are decomposed using CEEMDAN to extract intrinsic mode functions (IMFs) with distinct frequencies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!