This article reports the fine-tuning of the optical resonance wavelength (ORW) of surface-micromachined optical ultrasound transducer (SMOUT) arrays to enable ultrasound data readout with non-tunable interrogation light sources for photoacoustic computed tomography (PACT). Permanent ORW tuning is achieved by material deposition onto or subtraction from the top diaphragm of each element with sub-nanometer resolution. For demonstration, a SMOUT array is first fabricated, and its ORW is tuned for readout with an 808 nm laser diode (LD). Experiments are conducted to characterize the optical and acoustic performances of the elements within the center region of the SMOUT array. Two-dimensional and three-dimensional PACT (photoacoustic computed tomography) is also performed to evaluate the imaging performance of the ORW-tuned SMOUT array. The results show that the ORW tuning does not degrade the optical, acoustic, and overall imaging performances of the SMOUT elements. As a result, the fine-tuning method enables new SMOUT-based PACT systems that are low cost, compact, powerful, and even higher speed, with parallel readout capability.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11434503 | PMC |
http://dx.doi.org/10.3390/mi15091111 | DOI Listing |
Micromachines (Basel)
August 2024
Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77843, USA.
This article reports the fine-tuning of the optical resonance wavelength (ORW) of surface-micromachined optical ultrasound transducer (SMOUT) arrays to enable ultrasound data readout with non-tunable interrogation light sources for photoacoustic computed tomography (PACT). Permanent ORW tuning is achieved by material deposition onto or subtraction from the top diaphragm of each element with sub-nanometer resolution. For demonstration, a SMOUT array is first fabricated, and its ORW is tuned for readout with an 808 nm laser diode (LD).
View Article and Find Full Text PDFThis Letter reports a new, to the best of our knowledge, high-frequency surface-micromachined optical ultrasound transducer (HF-SMOUT) array for micro photoacoustic computed tomography (µPACT). An 11 × 11 mm 2D array of 220 × 220 elements (35 µm in diameter) is designed, fabricated, and characterized. The optical resonance wavelength (ORW) of ≥90% of the elements falls within a 6-nm range.
View Article and Find Full Text PDFToxicon
December 2023
Tropical Australian Stinger Research Unit, James Cook University, McGregor Road, Cairns, Queensland, Australia; Australian Institute of Tropical Health and Medicine (AITHM), James Cook University, McGregor Road, Cairns, Queensland, Australia.
Marine organisms possess a diverse array of unique substances, many with wide ranging potential for applications in medicine, industry, and other sectors. Stonefish (Synanceia spp.), a bottom-dwelling fish that inhabit shallow and intertidal waters throughout the Indo-Pacific, harbour two distinct substances, a venom, and an ichthyocrinotoxin.
View Article and Find Full Text PDFThis Letter reports the integration of microlenses (MLs) on a surface-micromachined optical ultrasound transducer (SMOUT) array to enable parallel ultrasound data readout from a multiplicity of elements. The MLs are fabricated by photoresist patterning and reflow, and their focal lengths are optimized with parametric studies. Experiments are conducted to characterize the acoustic responsivity and its uniformity of the SMOUT-ML elements under different conditions.
View Article and Find Full Text PDFThis paper reports a new 2D surface-micromachined optical ultrasound transducer (SMOUT) array consisting of 350 × 350 elements with highly uniform optical and acoustic performances. Each SMOUT element consists of a vacuum-sealed Fabry-Perot (F-P) interferometric cavity formed by two parallel partially reflective distributed Bragg reflectors (DBRs). Optical mapping in the 4 cm × 4 cm center region of the SMOUT array shows that the optical resonance wavelength (ORW) of > 94% of the elements falls within a narrow range of ≤ 10 nm.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!