Lung injury caused by respiratory infection is a major cause of hospitalization and mortality and a leading origin of sepsis. Sepsis-associated encephalopathy and delirium are frequent complications in patients with severe lung injury, yet the pathogenetic mechanisms remain unclear. Here, 70 female C57BL/6 mice were subjected to a single full-body-exposure with nebulized lipopolysaccharide (LPS). Neuromotor impairment was assessed repeatedly and brain, blood, and lung samples were analyzed at survival points of 24 h, 48 h, 72 h, and 96 h after exposure. qRT-PCR revealed increased mRNA-expression of and 24 h and 48 h after LPS-exposure in the lung, concomitantly with increased amounts of proteins in bronchoalveolar lavage and interstitial lung edema. In the cerebral cortex, at 72 h and/or 96 h after LPS exposure, the inflammation- and activity-associated markers , , , , and were increased. Therefore, single exposure to nebulized LPS not only triggers an early inflammatory reaction in the lung but also induces a delayed neuroinflammatory response. The identified mechanisms provide new insights into the pathogenesis of sepsis-associated encephalopathy and might serve as targets for future therapeutic approaches.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11432715PMC
http://dx.doi.org/10.3390/ijms251810117DOI Listing

Publication Analysis

Top Keywords

lung injury
12
nebulized lipopolysaccharide
8
sepsis-associated encephalopathy
8
lung
7
lipopolysaccharide delayed
4
delayed cortical
4
cortical neuroinflammation
4
neuroinflammation murine
4
murine model
4
model acute
4

Similar Publications

Introduction: Trauma and hemorrhagic shock (T/HS) are associated with multiple organ injury. Antithrombin (AT) has anti-inflammatory and organ protective activity through its interaction with endothelial heparan sulfate containing a 3-O-sulfate modification. Our objective was to examine the effects of T/HS on 3-O-sulfated (3-OS) heparan sulfate expression and determine whether AT-heparan sulfate interactions are necessary for its anti-inflammatory properties.

View Article and Find Full Text PDF

Design, Synthesis, and Evaluation of Selective PDE4 Inhibitors for the Therapy of Pulmonary Injury.

J Med Chem

January 2025

Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong 510260, China.

Pulmonary inflammation is the main cause of lung injury. Phosphodiesterase 4 (PDE4) is a promising anti-inflammatory target for the treatment of respiratory diseases. Herein, we designed and synthesized 43 compounds in two novel series of benzimidazole derivatives as PDE4 inhibitors.

View Article and Find Full Text PDF

Influenza virus infects millions each year, contributing greatly to human morbidity and mortality. Upon viral infection, pathogen-associated molecular patterns activate pattern recognition receptors on host cells, triggering an immune response. The CD209 protein family, homologs of DC-SIGN (dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin), is thought to modulate immune responses to viruses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!