This study investigates the immobilization of cyanobacterial photosystem I (PSI) from sp. PCC 6803 onto fluorine-doped tin oxide (FTO) conducting glass plates to create photoelectrodes for biohybrid solar cells. The fabrication of these PSI-FTO photoelectrodes is based on two immobilization processes: rapid electrodeposition driven by an external electric field and slower adsorption during solvent evaporation, both influenced by gravitational sedimentation. Deposition and performance of photoelectrodes was investigated by UV-Vis absorption spectroscopy and photocurrent measurements. We investigated the efficiency of PSI immobilization under varying conditions, including solution pH, applied electric field intensity and duration, and electrode polarization, with the goals to control (1) the direction of migration and (2) the orientation of the PSI particles on the substrate surface. Variation in the pH value of the PSI solution alters the surface charge distribution, affecting the net charge and the electric dipole moment of these proteins. Results showed PSI migration to the positively charged electrode at pH 6, 7, and 8, and to the negatively charged electrode at pH 4.4 and 5, suggesting an isoelectric point of PSI between 5 and 6. At acidic pH, the electrophoretic migration was largely hindered by protein aggregation. Notably, photocurrent generation was consistently cathodic and correlated with PSI layer thickness, and no conclusions can be drawn on the orientation of the immobilized proteins. Overall, these findings suggest mediated electron transfer from FTO to PSI by the used electrolyte containing 10 mM sodium ascorbate and 200 μM dichlorophenolindophenol.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11431872PMC
http://dx.doi.org/10.3390/ijms25189772DOI Listing

Publication Analysis

Top Keywords

photocurrent generation
8
psi
8
electric field
8
charged electrode
8
dependence protein
4
immobilization
4
protein immobilization
4
immobilization photocurrent
4
generation psi-fto
4
psi-fto electrodes
4

Similar Publications

A novel metal-organic framework (MOF), (Cu-S)MOF, with a copper-sulfur planar structure was applied to photocatalytic H production application. (Cu-S)MOF@ZnS nanocomposite was synthesized using a microwave-assisted hydrothermal approach. The formation of (Cu-S)MOF and wurtzite ZnS in the composite nanoparticles was analyzed by X-ray diffraction (XRD), field emission-scanning electron microscopy (FESEM), and high-resolution transmission electron microscope (HRTEM).

View Article and Find Full Text PDF

WO/Ag/TiO composite photoelectrodes were formed via the high-temperature calcination of a WO film, followed by the sputtering of a very thin silver film and deposition of an overlayer of commercial TiO nanoparticles. These synthetic photoanodes were characterized in view of the oxidation of a model organic compound glucose combined with the generation of hydrogen at a platinum cathode. During prolonged photoelectrolysis under simulated solar light, these photoanodes demonstrated high and stable photocurrents of ca.

View Article and Find Full Text PDF

The bulk photovoltaic effect (BPVE) and its artificial variant generate photocurrent under zero external bias in non-centrosymmetric systems, particularly in on-chip miniaturized metasurface-based photodetectors. Despite significant advancements, enhancing the efficiency of local photocurrent collection remains a challenge, often impeded by non-uniform flow fields in graphene caused by nanoantenna contacts, which lead to carrier transport losses. In this study, we conducted a comprehensive investigation into the regulation of local photocurrent collection in zero-bias optoelectronic metasurface-based photodetectors and explored the impact of nanoantenna array configurations on photocurrent efficiency.

View Article and Find Full Text PDF

Modulating Acceptor Phase Leads to 19.59% Efficiency Organic Solar Cells.

Adv Sci (Weinh)

December 2024

Center on Nanoenergy Research, Carbon Peak and Neutrality Science and Technology Development Institute, School of Physical Science & Technology, Guangxi University, Nanning, 530004, China.

Nonfullerene acceptors are critical in advancing the performance of organic solar cells. However, unfavorable morphology and low photon-to-electron conversion in the acceptor range continue to limit the photocurrent generation and overall device performance. Herein, benzoic anhydride, a low-cost polar molecule with excellent synergistic properties, is introduced in combination with the traditional additive 1-chloronaphthalene to optimize the aggregation of nonfullerene acceptors.

View Article and Find Full Text PDF

In this study, we investigated the aggregation-induced delayed fluorescence (AIDF) properties of three luminogens - TN, TA, and TP. Our comprehensive theoretical analysis reveals a significant reduction in the Δ in their aggregated or solid-state, activating TADF, on a ∼μs time-scale. Additionally, these luminogens demonstrate two-photon excited anti-Stokes photoluminescence emission and improved photocurrent generation, attributed to their strong charge transfer characteristics and longer singlet exciton lifetimes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!