The Protective Role of Interleukin-37 in Cardiovascular Diseases through Ferroptosis Modulation.

Int J Mol Sci

Departamento de Inmunología, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México 14080, Mexico.

Published: September 2024

The role of ferroptosis and iron metabolism dysregulation in the pathophysiology of cardiovascular diseases is increasingly recognized. Conditions such as hypertension, cardiomyopathy, atherosclerosis, myocardial ischemia/reperfusion injury, heart failure, and cardiovascular complications associated with COVID-19 have been linked to these processes. Inflammation is central to these conditions, prompting exploration into the inflammatory and immunoregulatory molecular pathways that mediate ferroptosis and its contribution to cardiovascular disease progression. Notably, emerging evidence highlights interleukin-37 as a protective cytokine with the ability to activate the nuclear factor erythroid 2-related factor 2 pathway, inhibit macrophage ferroptosis, and attenuate atherosclerosis progression in murine models. However, a comprehensive review focusing on interleukin-37 and its protective role against ferroptosis in CVD is currently lacking. This review aims to fill this gap by summarizing existing knowledge on interleukin-37, including its regulatory functions and impact on ferroptosis in conditions such as atherosclerosis and myocardial infarction. We also explore experimental strategies and propose that targeting interleukin-37 to modulate ferroptosis presents a promising therapeutic approach for the prevention and treatment of cardiovascular diseases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11432013PMC
http://dx.doi.org/10.3390/ijms25189758DOI Listing

Publication Analysis

Top Keywords

cardiovascular diseases
12
protective role
8
role ferroptosis
8
atherosclerosis myocardial
8
interleukin-37 protective
8
ferroptosis
7
interleukin-37
5
cardiovascular
5
role interleukin-37
4
interleukin-37 cardiovascular
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!