Wheat is used for making many food products due to its diverse quality profile among different wheat classes. Since laboratory analysis of these end-use quality traits is costly and time-consuming, genetic dissection of the traits is preferential. This study used a genome-wide association study (GWAS) of ten end-use quality traits, including kernel protein, flour protein, flour yield, softness equivalence, solvent's retention capacity, cookie diameter, and top-grain, in soft red winter wheat (SRWW) adapted to US southeast. The GWAS included 266 SRWW genotypes that were evaluated in two locations over two years (2020-2022). A total of 27,466 single nucleotide markers were used, and a total of 80 significant marker-trait associations were identified. There were 13 major-effect quantitative trait loci (QTLs) explaining >10% phenotypic variance, out of which, 12 were considered to be novel. Five of the major-effect QTLs were found to be stably expressed across multiple datasets, and four showed associations with multiple traits. Candidate genes were identified for eight of the major-effect QTLs, including genes associated with starch biosynthesis and nutritional homeostasis in plants. These findings increase genetic comprehension of these end-use quality traits and could potentially be used for improving the quality of SRWW.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11431581PMC
http://dx.doi.org/10.3390/genes15091177DOI Listing

Publication Analysis

Top Keywords

end-use quality
16
quality traits
16
genome-wide association
8
association study
8
novel major-effect
8
major-effect quantitative
8
quantitative trait
8
trait loci
8
soft red
8
red winter
8

Similar Publications

End-use and processing traits in wheat (Triticum aestivum L.) are crucial for varietal development but are often evaluated only in the advanced stages of the breeding program due to the amount of grain needed and the labor-intensive phenotyping assays. Advances in genomic resources have provided new tools to address the selection for these complex traits earlier in the breeding process.

View Article and Find Full Text PDF

Isolation and characterization of gamma rays induced mutants for improved agro-morphological performance and harder grain texture in wheat ( L.).

Int J Radiat Biol

November 2024

Department of Genetics and Plant Breeding, CSK Himachal Pradesh Krishi Vishvavidyalaya, Palampur, Himachal Pradesh, India.

Purpose: Kernel texture plays a principal role in determining technological flour properties and end-use quality of wheat products. Hence, a multi-year mutation induction programme was conducted to isolate advanced wheat mutant lines with agro-morphologically superior performance, higher disease resistance and harder grain texture.

Materials And Methods: Radiation mutagenesis was employed in soft textured wheat variety HPW 89 using gamma rays dose of 250, 300 and 350 Gy (Co: BARC, Mumbai) and evaluated across M generations.

View Article and Find Full Text PDF

Fine mapping of QGPC.caas-7AL for grain protein content in bread wheat.

Theor Appl Genet

November 2024

Institute of Crop Sciences, State Key Laboratory of Crop Gene Resources and Breeding, National Wheat Improvement Centre, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China.

A major stable QTL, QGPC.caas-7AL, for grain protein content of wheat, was narrowed down to a 1.82-Mb inter on chromosome 7AL, and four candidate genes were predicated.

View Article and Find Full Text PDF

Background: Amylose has a major influence over starch properties and end-use quality in wheat. The granule-bound starch synthase I, encoded by Wx-1, is the single enzyme responsible for amylose synthesis. Natural null mutants of Wx-1 appear at extremely low frequencies, particularly in the Wx-D1 locus, where only four spontaneous null variants have been identified, with different geographic origins.

View Article and Find Full Text PDF
Article Synopsis
  • The world is nearing the critical threshold of 1.5°C warming, with 2023 recording an average temperature rise of 1.45°C since pre-industrial times, leading to severe climate-related impacts.
  • The Countdown collaboration, formed to assess the health impacts of climate change post-Paris Agreement, involves over 300 experts analyzing data and trends annually.
  • The 2024 report highlights troubling increases in climate-related health risks, such as a staggering 167% rise in heat-related deaths among seniors, indicating worsening conditions affecting wellbeing globally.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!