Short Tandem Repeat (STR) testing via capillary electrophoresis is undoubtedly the most popular forensic genetic testing method. However, its low multiplexing capabilities and limited performance with challenging samples are among the factors pushing scientists towards new technologies. Next-generation sequencing (NGS) methods overcome some of these limitations while also enabling the testing of Single-Nucleotide Polymorphisms (SNPs). Nonetheless, these methods are still under optimization, and their adoption into practice is limited. Among the available kits, Thermo Fisher Scientific (Waltham, MA, USA) produces three Precision ID Panels: GlobalFiler NGS STR, Identity, and Ancestry. A clear review of these kits, providing information useful for the promotion of their use, is, however, lacking. To close the gap, a literature review was performed to investigate the popularity, applications, and performance of these kits. Following the PRISMA guidelines, 89 publications produced since 2015 were identified. China was the most active country in the field, and the Identity Panel was the most researched. All kits appeared robust and useful for low-quality and low-quantity samples, while performance with mixtures varied. The need for more population data was highlighted, as well as further research surrounding variables affecting the quality of the sequencing results.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11431077 | PMC |
http://dx.doi.org/10.3390/genes15091133 | DOI Listing |
Chem Soc Rev
January 2025
National-local Joint Engineering Research Center of Biomass Refining and High-quality Utilization, Changzhou University, Changzhou 213164, China.
Multiple oxygenate groups in biomass-based feedstocks are open to multiple catalytic pathways and products, typically resulting in low selectivity for the desired products. In this context, strategies for rational catalyst design are critical to obtain high selectivity for the desired products in biomass upgrading. The Sabatier principle provides a conceptual framework for designing optimal catalysts by following the volcanic relationship between catalyst activity for a reaction and the binding strength of a substrate on a catalyst.
View Article and Find Full Text PDFJ Air Waste Manag Assoc
January 2025
School of Emergency Management and Safety Engineering, China University of Mining and Technology (Beijing), Beijing, China.
Dust emissions from open-pit mining pose a significant threat to environmental safety and human health. Currently, the range of dust suppressants used in coal mining is limited, often failing to account for their suitability across various stockpiles. This oversight results in poor infiltration after application, leading to insufficient crust formation and reduced durability.
View Article and Find Full Text PDFISME J
January 2025
Evolutionary Ecology of Plants, Department of Biology, University of Marburg, 35043 Marburg, Germany.
Land-use changes threaten ecosystems and are a major driver of species loss. Plants may adapt or migrate to resist global change, but this can lag behind rapid anthropogenic changes to the environment. Our data show that natural modulations of the microbiome of grassland plants in response to experimental land-use change in a common garden directly affect plant phenotype and performance, thus increasing plant tolerance.
View Article and Find Full Text PDFCell Biochem Biophys
January 2025
Department of Electronics and Communication Engineering, Hajee Mohammad Danesh Science and Technology University, Dinajpur, 5200, Bangladesh.
Blood components play a crucial role in maintaining human health and accurately detecting them is essential for medical diagnostics. A cutting-edge sensor utilizing PCF revealed to precisely identify a wide range of blood components with WBCs (white blood cells), RBCs (red blood cells), HB (hemoglobin), platelets, and plasma. A numerical analysis was performed using COMSOL Multiphysics software to assess the capabilities of the sensor.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
January 2025
College of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng, 224051, PR China.
L-valine holds wide-ranging applications in medicine, food, feed, and various industrial sectors. Escherichia coli, a pivotal strain in industrial L-valine production, features a concise fermentation period and a well-defined genetic background. This study focuses on mismatch repair genes (mutH, mutL, mutS, and recG) and genes associated with mutagenesis (dinB, rpoS, rpoD, and recA), employing a high-glucose adaptive culture in conjunction with metabolic modifications to systematically screen for superior phenotypes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!