AI Article Synopsis

  • Psyllids, which are hard to identify for non-experts, are plant-sucking insects with limited DNA sequence data available, often leading to misidentifications.
  • This study presents 80 new DNA barcode sequences from two mitochondrial genes for 25 species of Aphalaridae, particularly from Bulgaria, with 15 species' barcodes being published for the first time.
  • The findings support the effectiveness of DNA barcoding for species identification, revealing new records for Bulgaria and first-time reports of certain species in the Czech Republic and Albania.

Article Abstract

Psyllids (Hemiptera: Psylloidea) are plant sap-sucking insects whose identification is often difficult for non-experts. Despite the rapid development of DNA barcoding techniques and their widespread use, only a limited number of sequences of psyllids are available in the public databases, and those that are available are often misidentified. Here, we provide 80 sequences of two mitochondrial genes, cytochrome c oxidase I () and cytochrome b (), for 25 species of Aphalaridae, mainly from Bulgaria. The DNA barcodes for 15 of these species are published for the first time. In cases where standard primers failed to amplify the target gene fragment, we designed new primers that can be used in future studies. The distance-based thresholds for the analysed species were between 0.0015 and 0.3415 for and 0.0771 and 0.4721 for , indicating that the gene has a higher interspecific divergence, compared to , and therefore allows for more accurate species identification. The species delimitation based on DNA barcodes is largely consistent with the differences resulting from morphological and host plant data, demonstrating that the use of DNA barcodes is suitable for successful identification of most aphalarid species studied. The phylogenetic reconstruction based on maximum likelihood and Bayesian inference analyses, while showing similar results at high taxonomic levels to previously published phylogenies, provides additional information on the placement of aphalarids at the species level. The following five species represent new records for Bulgaria: , , , , and . is reported for the first time from the Czech Republic, while is reported for the first time from Albania.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11431860PMC
http://dx.doi.org/10.3390/insects15090683DOI Listing

Publication Analysis

Top Keywords

dna barcodes
12
hemiptera psylloidea
8
species
8
reported time
8
unravelling molecular
4
molecular identity
4
identity bulgarian
4
bulgarian jumping
4
jumping plant
4
plant lice
4

Similar Publications

Understanding kinase action requires precise quantitative measurements of their activity . In addition, the ability to capture spatial information of kinase activity is crucial to deconvolute complex signaling networks, interrogate multifaceted kinase actions, and assess drug effects or genetic perturbations. Here we developed a proteomic kinase activity sensor platform (ProKAS) for the analysis of kinase signaling using mass spectrometry.

View Article and Find Full Text PDF

Sample multiplexing is an emerging method in single-cell RNA sequencing (scRNA-seq) that addresses high costs and batch effects. Current multiplexing schemes use DNA labels to barcode cell samples but are limited in their stability and extent of labeling across heterogeneous cell populations. Here, we introduce Nanocoding using lipid nanoparticles (LNPs) for high barcode labeling density in multiplexed scRNA-seq.

View Article and Find Full Text PDF

The CRISPR-activated repair lineage tracing (CARLIN) mouse line uses DNA barcoding to enable high-resolution tracing of cell lineages in vivo (Bowling et al, Cell 181, 1410-1422.e27, 2020). CARLIN mice contain expressed barcodes that allow simultaneous interrogation of lineage and gene expression information from single cells.

View Article and Find Full Text PDF
Article Synopsis
  • This chapter focuses on using lineage barcodes, which are measurements of cell evolution through mutations, to study single cells' development and fate changes.
  • It presents Quantitative Fate Mapping (QFM) and its computational tools, such as the Phylotime model for cell phylogeny and the ICE-FASE algorithm for analyzing progenitor cells.
  • The importance of proper sampling for interpreting results is highlighted, offering a comprehensive framework for understanding how cell fates evolve over time.
View Article and Find Full Text PDF

Single-Cell Lineage Tracing and Clonal State-Fate Analysis.

Methods Mol Biol

January 2025

Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Catalonia, Spain.

Lineage tracing has significantly advanced our comprehension in many areas of biology, such as development or immunity, by precisely measuring cellular processes like migration, division, or differentiation across labeled cells and their progeny. Traditional recombinase-based prospective lineage tracing is limited by the need for a priori cell type information and is constrained in the numbers of clones it can simultaneously track. In this sense, clonal lineage tracing with integrated random barcodes offers a robust alternative, enabling researchers to label and track a vast array of cells and their progeny over time.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!