A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Auxeticity Tuning by Nanolayer Inclusion Ordering in Hard Sphere Crystals. | LitMetric

Auxeticity Tuning by Nanolayer Inclusion Ordering in Hard Sphere Crystals.

Materials (Basel)

Institute of Molecular Physics, Polish Academy of Sciences, M. Smoluchowskiego 17, 60-179 Poznań, Poland.

Published: September 2024

Designing a particular change in a system structure to achieve the desired elastic properties of materials for a given task is challenging. Recent studies of purely geometrical atomic models have shown that structural modifications on a molecular level can lead to interesting and desirable elastic properties. Still, the result of such changes is usually difficult to predict. The present work concerns the impact of nanolayer inclusion ordering in hard sphere crystals on their elastic properties, with special attention devoted to their auxetic properties. Two sets of representative models, based on cubic crystals consisting of 6×6×6 unit cells of hard spheres and containing either neighboring or separated layers of spheres of another diameter, oriented orthogonally to the [001] direction, have been studied by Monte Carlo simulations in the isothermal-isobaric () ensemble. Their elastic constants have been evaluated using the Parinello-Rahman approach. The Monte Carlo simulations showed that introducing the layer inclusions into a pure face-centered cubic (FCC) structure leads to the system's symmetry changes from cubic symmetry to tetragonal in both cases. Essential changes in the elastic properties of the systems due to layer ordering were found both for neighboring and separated inclusions. It has been found that the choice of a set of layer inclusions allows one to tune the auxetic properties in two crystallographic directions ([110][11¯0] and [101][1¯01]). In particular, this study revealed that the change in layer ordering (from six separated layers to six neighboring ones) allows for, respectively: (i) enhancing auxeticity of the system in the [101][1¯01] direction with almost loss of auxetic properties in the [110][11¯0] direction in the case of six separated layers, while (ii) in the case of six neighboring layers, keeping the auxetic properties in both auxetic directions independently of the size of spheres constituting inclusions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11433258PMC
http://dx.doi.org/10.3390/ma17184564DOI Listing

Publication Analysis

Top Keywords

elastic properties
16
auxetic properties
16
separated layers
12
nanolayer inclusion
8
inclusion ordering
8
ordering hard
8
hard sphere
8
sphere crystals
8
properties
8
neighboring separated
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!