Incremental Growth Analysis of a Cantilever Beam under Cyclic Thermal and Axial Loads.

Materials (Basel)

Department of Mechanical Engineering, McMaster University, Hamilton, ON L8S 4L7, Canada.

Published: September 2024

Ratcheting analysis for cantilever beams subjected to the thermomechanical loads is presented using the finite element method. The cantilever beam is constrained along the vertical direction, and plane stress conditions are assumed according to the bilinear isotropic hardening model. Two points are considered to obtain areas of ratcheting by using linear extrapolation. The results and output diagrams for ratcheting with elastic-perfect plastic behavior are illustrated. It was revealed that the beam behaves elastically after the first considerable plastic strain, which is seen in two shakedown regimes. The numerical results are verified with known and analytical results in the literature. The results indicate a strong correlation between the outcomes from the cyclic ANSYS Parametric Design Language (APDL) model and Bree's analytical predictions. This consistency between the finite element analysis and the analytical solutions underscores the potential of finite element analysis as a powerful tool for addressing complex engineering challenges, offering a reliable and robust alternative to traditional analytical methods.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11433349PMC
http://dx.doi.org/10.3390/ma17184550DOI Listing

Publication Analysis

Top Keywords

finite element
12
analysis cantilever
8
cantilever beam
8
element analysis
8
incremental growth
4
analysis
4
growth analysis
4
beam cyclic
4
cyclic thermal
4
thermal axial
4

Similar Publications

Understanding the interplay between biology and mechanics in tissue architecture is challenging, particularly in terms of 3D tissue organization. Addressing this challenge requires a biological model enabling observations at multiple levels from cell to tissue, as well as theoretical and computational approaches enabling the generation of a synthetic model that is relevant to the biological model and allowing for investigation of the mechanical stresses experienced by the tissue. Using a monolayer human colon epithelium organoid as a biological model, freely available tools (Fiji, Cellpose, Napari, Morphonet, or Tyssue library), and the commercially available Abaqus FEM solver, we combined vertex and FEM approaches to generate a comprehensive viscoelastic finite element model of the human colon organoid and demonstrated its flexibility.

View Article and Find Full Text PDF

This study presents a novel approach to modeling breast cancer dynamics, one of the most significant health threats to women worldwide. Utilizing a piecewise mathematical framework, we incorporate both deterministic and stochastic elements of cancer progression. The model is divided into three distinct phases: (1) initial growth, characterized by a constant-order Caputo proportional operator (CPC), (2) intermediate growth, modeled by a variable-order CPC, and (3) advanced stages, capturing stochastic fluctuations in cancer cell populations using a stochastic operator.

View Article and Find Full Text PDF

Catalytic Hydrolysis of Perfluorinated Compounds in a Yolk-Shell Micro-Reactor.

Adv Sci (Weinh)

January 2025

Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, School of Physics, Central South University, Changsha, Hunan, 410083, P. R. China.

Perfluorinated compounds (PFCs) are emerging environmental pollutants characterized by their extreme stability and resistance to degradation. Among them, tetrafluoromethane (CF) is the simplest and most abundant PFC in the atmosphere. However, the highest C─F bond energy and its highly symmetrical structure make it particularly challenging to decompose.

View Article and Find Full Text PDF

Study of Thermal Effects in Fused-Tapered Pure Passive Fibers and Signal Combiners.

Nanomaterials (Basel)

January 2025

School of Physics and Optoelectronic Engineering, Beijing University of Technology, Beijing 100124, China.

This paper investigates the thermal effects in fused-tapered passive optical fibers under near-infrared absorption. The thermal effect is primarily caused by impurities, such as OH-, which absorb incident light and generate heat. Using the finite element method, the volume changes during fiber tapering were simulated, influencing power density and thermal distribution.

View Article and Find Full Text PDF

Optoelectronic Properties of Shallow Donor Atom in 2D-Curved Nanostructures Under External Electric and Magnetic Fields.

Nanomaterials (Basel)

December 2024

Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín 050010, Colombia.

Using the effective mass approximation and the finite difference method, we examined the linear, non-linear, and total optical absorption coefficients (OAC), as well as the relative refractive index coefficients (RIC) variations for an off-center shallow donor impurity in a 2D-curved electronic nanostructure subjected to external electric and magnetic fields. Our results reveal that the peak positions of the OAC and RIC are susceptible to the geometrical angles, the impurity position, and the strength of the applied electric and magnetic fields. In particular, the positions of the OAC and RIC peaks can be shifted towards blue or red by adjusting the geometric angle.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!