Simulated High Throughput Sequencing Datasets: A Crucial Tool for Validating Bioinformatic Pathogen Detection Pipelines.

Biology (Basel)

Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA.

Published: September 2024

The validation of diagnostic assays in plant pathogen detection is a critical area of research. It requires the use of both negative and positive controls containing a known quantity of the target pathogen, which are crucial elements when calculating analytical sensitivity and specificity, among other diagnostic performance metrics. High Throughput Sequencing (HTS) is a method that allows the simultaneous detection of a theoretically unlimited number of plant pathogens. However, accurately identifying the pathogen from HTS data is directly related to the bioinformatic pipeline utilized and its effectiveness at correctly assigning reads to their associated taxa. To this day, there is no consensus about the pipeline that should be used to detect the pathogens in HTS data, and results often undergo review and scientific evaluation. It is, therefore, imperative to establish HTS resources tailored for evaluating the performance of bioinformatic pipelines utilized in plant pathogen detection. Standardized artificial HTS datasets can be used as a benchmark by allowing users to test their pipelines for various pathogen infection scenarios, some of the most prevalent being multiple infections, low titer pathogens, mutations, and new strains, among others. Having these artificial HTS datasets in the hands of HTS diagnostic assay validators can help resolve challenges encountered when implementing bioinformatics pipelines for routine pathogen detection. Offering these purely artificial HTS datasets as benchmarking tools will significantly advance research on plant pathogen detection using HTS and enable a more robust and standardized evaluation of the bioinformatic methods, thereby enhancing the field of plant pathogen detection.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11428249PMC
http://dx.doi.org/10.3390/biology13090700DOI Listing

Publication Analysis

Top Keywords

pathogen detection
24
plant pathogen
16
artificial hts
12
hts datasets
12
pathogen
9
hts
9
high throughput
8
throughput sequencing
8
hts data
8
detection
7

Similar Publications

Single nucleotide variations (SNVs) and polymorphisms (SNPs) are characteristic biomarkers in various biological contexts, including pathogen drug resistances and human diseases. Tools that lower the implementation barrier of molecular SNV detection methods would provide greater leverage of the expanding SNP/SNV database. The oligonucleotide ligation assay (OLA) is a highly specific means for detection of known SNVs and is especially powerful when coupled with polymerase chain reaction (PCR).

View Article and Find Full Text PDF

FilmArray® Effectively Detects All Clades of F41 but Encounters Challenges with Other Adenovirus Species.

J Infect Chemother

January 2025

Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan. Electronic address:

The BioFire FilmArray® Gastrointestinal (GI) Panel, a widely used diagnostic tool, is designed to detect the genetic material of 22 common pathogens responsible for gastroenteritis, including viruses, bacteria, and parasites. It can detect human adenovirus (HAdV) species F, particularly serotypes F40 and F41, which are the major causes of diarrhea and mortality in children. However, its potential shortcomings in detecting other HAdV species limit its effectiveness in broader HAdV detection in clinical settings and outbreak investigations.

View Article and Find Full Text PDF

Invasive pulmonary infections are a significant cause of morbidity and mortality in patients with hematological malignancies and hematopoietic stem cell transplantation (HCT) recipients. A delay in identifying a causative agent may result in late initiation of appropriate treatment and adverse clinical outcomes. We examine the diagnostic utility of PCR-based assays in evaluating invasive pulmonary infections from bronchoalveolar lavage (BAL).

View Article and Find Full Text PDF

Rapid visual detection of hepatitis E virus combining reverse transcription recombinase-aided amplification with lateral flow dipstick and real-time fluorescence.

J Clin Microbiol

January 2025

Laboratory of Animal Pathology and Public Health, National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China.

Unlabelled: Hepatitis E virus (HEV) is a globally prevalent zoonotic pathogen that is primarily spread through the fecal-oral route, such as by consuming undercooked or contaminated pork. HEV infection leads to an estimated 3.3 million symptomatic cases of viral hepatitis and 70,000 deaths in human populations each year.

View Article and Find Full Text PDF

Autoinducer-2 enhances the defense of against oxidative stress and DNA damage by modulation of c-di-GMP signaling via a two-component system.

mBio

January 2025

State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China.

As a universal language across the bacterial kingdom, the quorum sensing signal autoinducer-2 (AI-2) can coordinate many bacterial group behaviors. However, unknown AI-2 receptors in bacteria may be more than what has been discovered so far, and there are still many unknown functions for this signal waiting to be explored. Here, we have identified a membrane-bound histidine kinase of the pathogenic bacterium , AsrK, as a receptor that specifically detects AI-2 under low boron conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!