Dopaminergic neurons in the ventral tegmental area (VTA) and the substantia nigra pars compacta (SNpc) comprise around 75% of all dopaminergic neurons in the human brain. While both groups of dopaminergic neurons are in close proximity in the midbrain and partially overlap, development, function, and impairments in these two classes of neurons are highly diverse. The molecular and cellular mechanisms underlying these differences are not yet fully understood, but research over the past decade has highlighted the need to differentiate between these two classes of dopaminergic neurons during their development and in the mature brain. This differentiation is crucial not only for understanding fundamental circuitry formation in the brain but also for developing therapies targeted to specific dopaminergic neuron classes without affecting others. In this review, we summarize the state of the art in our understanding of the differences between the dopaminergic neurons of the VTA and the SNpc, such as anatomy, structure, morphology, output and input, electrophysiology, development, and disorders, and discuss the current technologies and methods available for studying these two classes of dopaminergic neurons, highlighting their advantages, limitations, and the necessary improvements required to achieve more-precise therapeutic interventions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11428604PMC
http://dx.doi.org/10.3390/biology13090690DOI Listing

Publication Analysis

Top Keywords

dopaminergic neurons
24
state art
8
neurons
8
classes dopaminergic
8
dopaminergic
7
art sub-phenotyping
4
sub-phenotyping midbrain
4
midbrain dopamine
4
dopamine neurons
4
neurons dopaminergic
4

Similar Publications

Peripherally administered TNF inhibitor is not protective against α-synuclein-induced dopaminergic neuronal death in rats.

Neurobiol Dis

January 2025

Department of Biomedicine & Danish Research Institute of Translational Neuroscience - DANDRITE, Aarhus University, 8000 Aarhus, Denmark. Electronic address:

The underlying cause of neuronal loss in Parkinson's disease (PD) remains unknown, but evidence implicates neuroinflammation in PD pathobiology. The pro-inflammatory cytokine soluble tumor necrosis factor (TNF) seems to play an important role and thus has been proposed as a therapeutic target for modulation of the neuroinflammatory processes in PD. In this regard, dominant-negative TNF (DN-TNF) agents are promising antagonists that selectively inhibit soluble TNF signaling, while preserving the beneficial effects of transmembrane TNF.

View Article and Find Full Text PDF

Corrigendum to "Induction of glial cell line-derived neurotrophic factor by the squamosamide derivative FLZ in astroglia has neuroprotective effects on dopaminergic neurons" [Brain Res. Bull. 154 (2020) 32-42].

Brain Res Bull

January 2025

State Key Laboratory of Bioactive Substance and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Xian Nong Tan Street, Beijing 100050, China; Department of Occupational and Environmental Health, School of Public Health, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian 116044, China. Electronic address:

View Article and Find Full Text PDF

The role of mitochondrial remodeling in neurodegenerative diseases.

Neurochem Int

January 2025

Department of Environmental and Occupational Health, School of Public Health, Guangdong Medical University, Dongguan, 523808, PR China; Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, PR China. Electronic address:

Neurodegenerative diseases are a group of diseases that pose a serious threat to human health, such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD) and Amyotrophic Lateral Sclerosis (ALS). In recent years, it has been found that mitochondrial remodeling plays an important role in the onset and progression of neurodegenerative diseases. Mitochondrial remodeling refers to the dynamic regulatory process of mitochondrial morphology, number and function, which can affect neuronal cell function and survival by regulating mechanisms such as mitochondrial fusion, division, clearance and biosynthesis.

View Article and Find Full Text PDF

Establishment of a novel method for differentiating into dopaminergic neurons using charged hydrogels.

Biochem Biophys Res Commun

January 2025

Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, Sapporo, Japan; World Premier International Research Center Initiative, Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Japan. Electronic address:

Parkinson's disease (PD) is a neurodegenerative disease primarily affecting the central nervous system and impacting both the motor system and non-motor systems. Although administration of L-DOPA is effective, it is not a fundamental treatment and has side effects such as diurnal fluctuation and dyskinesia, highlighting the need for new treatment methods. There is a growing interest in dopaminergic neuron transplantation as a potential treatment.

View Article and Find Full Text PDF

Localization of Melanocortin 1 Receptor in the Substantia Nigra.

Int J Mol Sci

December 2024

Department of Anatomy, Dokkyo Medical University School of Medicine, 880 Kita-Kobayashi, Mibu-machi, Shimotsuga-gun 321-0293, Tochigi, Japan.

Recent findings have revealed that melanocortin 1 receptor (MC1R) deficiency leads to Parkinson's disease-like dopaminergic neurodegeneration in the substantia nigra (SN). However, its precise distribution and expressing-cell type in the SN remain unclear. Therefore, in this study, we analyzed the localization and characteristics of MC1R in the SN using histological methods, including in situ hybridization and immunohistochemistry.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!